On periodic perturbations of self-oscillating pendulum equations
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 79-89
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider time-periodic perturbations of self-oscillating pendulum equation which arises from analysis of one system with two degrees of freedom. We derive averaged systems which describe the behavior of solutions of original equation in resonant areas and we find existence condition of Poincar homoclinic structure. In the case when autonomous equation has 5 limit cycles in oscillating region we give results of numerical computation. Under variation of perturbation frequency we investigate bifurcations of phase portraits of Poincar map.
Keywords:
pendulum equation, resonances.
Mots-clés : limit cycles
Mots-clés : limit cycles
@article{ND_2010_6_1_a4,
author = {S. A. Korolev and A. D. Morozov.},
title = {On periodic perturbations of self-oscillating pendulum equations},
journal = {Russian journal of nonlinear dynamics},
pages = {79--89},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a4/}
}
TY - JOUR AU - S. A. Korolev AU - A. D. Morozov. TI - On periodic perturbations of self-oscillating pendulum equations JO - Russian journal of nonlinear dynamics PY - 2010 SP - 79 EP - 89 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a4/ LA - ru ID - ND_2010_6_1_a4 ER -
S. A. Korolev; A. D. Morozov. On periodic perturbations of self-oscillating pendulum equations. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 79-89. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a4/