On periodic perturbations of self-oscillating pendulum equations
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 79-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider time-periodic perturbations of self-oscillating pendulum equation which arises from analysis of one system with two degrees of freedom. We derive averaged systems which describe the behavior of solutions of original equation in resonant areas and we find existence condition of Poincar homoclinic structure. In the case when autonomous equation has 5 limit cycles in oscillating region we give results of numerical computation. Under variation of perturbation frequency we investigate bifurcations of phase portraits of Poincar map.
Keywords: pendulum equation, resonances.
Mots-clés : limit cycles
@article{ND_2010_6_1_a4,
     author = {S. A. Korolev and A. D. Morozov.},
     title = {On periodic perturbations of self-oscillating pendulum equations},
     journal = {Russian journal of nonlinear dynamics},
     pages = {79--89},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a4/}
}
TY  - JOUR
AU  - S. A. Korolev
AU  - A. D. Morozov.
TI  - On periodic perturbations of self-oscillating pendulum equations
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 79
EP  - 89
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a4/
LA  - ru
ID  - ND_2010_6_1_a4
ER  - 
%0 Journal Article
%A S. A. Korolev
%A A. D. Morozov.
%T On periodic perturbations of self-oscillating pendulum equations
%J Russian journal of nonlinear dynamics
%D 2010
%P 79-89
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_1_a4/
%G ru
%F ND_2010_6_1_a4
S. A. Korolev; A. D. Morozov. On periodic perturbations of self-oscillating pendulum equations. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 79-89. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a4/

[1] Struble R. A., “Oscillations of a pendulum under parametric excitation”, Quart. Appl. Math., 21 (1963), 121–131 | MR

[2] Belykh V. N., Pankratova E. V., Pogromsky A. Yu., Nijmeijer H., “Two Van der Pol–Duffing oscillators with Huygens coupling”, Proc. 6th EUROMECH Nonlinear Dynamics Conference (Saint Petersburg, Russia, 2008)

[3] Morozov A. D., Rezonansy, tsikly i khaos v kvazikonservativnykh sistemakh, RKhD, M.-Izhevsk, 2005, 420 pp.

[4] Morozov A. D., “O predelnykh tsiklakh i khaose v uravneniyakh mayatnikovogo tipa”, PMM, 53:5 (1989), 721–730 | MR | Zbl

[5] Andronov A. A., Vitt A. A., “K teorii zakhvatyvaniya Van der Polya”, Sobr. trudov A. A. Andronova, ed. A. A. Andronov, Izd-vo AN SSSR, M., 1956, 51–64

[6] Borisyuk G. N., Borisyuk P. M., Kazanovich Ya. B., Luzyanina T. B., Turova T. S., Tsymbalyuk G. S., “Ostsillyatornye neironnye seti. Matematicheskie rezultaty i prilozheniya”, Matem. modelirovanie, 4:1 (1992), 3–43 | MR | Zbl

[7] Morozov A. D., Shilnikov L. P., “O nekonservativnykh periodicheskikh sistemakh, blizkikh k dvumernym gamiltonovym”, PMM, 47:3 (1983), 385–394 | MR

[8] Morozov A. D., Dragunov T. N., Vizualizatsiya i analiz invariantnykh mnozhestv dinamicheskikh sistem, Inst. kompyuter. issled., M.-Izhevsk, 2003, 304 pp.

[9] Melnikov V. K., “Ob ustoichivosti tsentra pri periodicheskikh po vremeni vozmuscheniyakh”, Tr. Mosk. matem. ob-va, 12, 1963, 3–52

[10] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67 | MR | Zbl

[11] Shilnikov L. P., “Ob odnoi zadache Puankare–Birkgofa”, Matem. sb., 74:3 (1967), 378–397