Invariant tori and chaotic dynamics in a nonlinear nonautonomous Reyleigh-like equation
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 53-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a nonlinear Reyleigh-like system with a periodic perturbation, we give some fragments of the study to be connected with the problems of the existence of both chaotic dynamics and invariant tori of certain types. We construct bifurcation diagrams explaining a character of boundaries for regions corresponding to the existence of chaotic dynamics and the invariant tori. Besides, we construct bifurcation curves (for a series of periodic motions) which play the principal role at scenarios of creation of the boundaries pointed out.
Keywords: dynamical chaos, closed invariant curve, homoclinic tangency, resonance.
Mots-clés : bifurcation set
@article{ND_2010_6_1_a2,
     author = {L. A. Belyakov and G. V. Belyakova},
     title = {Invariant tori and chaotic dynamics in a nonlinear nonautonomous {Reyleigh-like} equation},
     journal = {Russian journal of nonlinear dynamics},
     pages = {53--59},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a2/}
}
TY  - JOUR
AU  - L. A. Belyakov
AU  - G. V. Belyakova
TI  - Invariant tori and chaotic dynamics in a nonlinear nonautonomous Reyleigh-like equation
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 53
EP  - 59
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a2/
LA  - ru
ID  - ND_2010_6_1_a2
ER  - 
%0 Journal Article
%A L. A. Belyakov
%A G. V. Belyakova
%T Invariant tori and chaotic dynamics in a nonlinear nonautonomous Reyleigh-like equation
%J Russian journal of nonlinear dynamics
%D 2010
%P 53-59
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_1_a2/
%G ru
%F ND_2010_6_1_a2
L. A. Belyakov; G. V. Belyakova. Invariant tori and chaotic dynamics in a nonlinear nonautonomous Reyleigh-like equation. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 53-59. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a2/

[1] Maier A. G., “Dokazatelstvo suschestvovaniya predelnykh tsiklov u uravnenii Releya i Van-der-Polya”, Uch. zapiski Gorkovskogo gos. un-ta, 1935, no. 2, 19–30 | MR

[2] Afraimovich V. S., Shilnikov L. P., “Invariantnye dvumernye tory, ikh razrushenie i stokhastichnost”, Metody kachestvennoi teorii diff. uravnenii, Mezhvuz. sb., eds. E. A. Leontovich-Andronova, GGU, Gorkii, 1983, 3–25 | MR

[3] Afraimovich V. S., Shilnikov L. P., “Strange attractors and quasiattractors”, Nonlinear dynamics and turbulence, eds. G. I. Barenblatt, G. Iooss, D. D. Joseph, Pitman, Boston, 1983, 1–34 | MR

[4] Morozov A. D., Shilnikov L. P., “O nekonservativnykh periodicheskikh sistemakh, blizkikh k dvumernym gamiltonovym”, PMM, 47:3 (1983), 385–394 | MR

[5] Morozov A. D., Rezonansy, tsikly i khaos v kvazikonservativnykh sistemakh, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.-Izhevsk, 2005, 424 pp.

[6] Afraimovich V. S., “Vnutrennie bifurkatsii i krizisy attraktorov”, Nelineinye volny. Struktury i bifurkatsii, Nauka, M., 1987, 189–213

[7] Gonchenko S. V., Shilnikov L. P., Gomoklinicheskie kasaniya, Cb. statei, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2007, 523 pp.

[8] Turaev D. V., Shilnikov A. L., Shilnikov L. P., “Nekotorye matematicheskie problemy klassicheskoi sinkhronizatsii”, Trudy shkoly “Nelineinye volny” (N. Novgorod, 2004), eds. A. V. Gaponova-Grekhova, V. I. Nekorkina, IPF RAN, Nizhnii Novgorod, 2005, 426–449