Invariant tori and chaotic dynamics in a nonlinear nonautonomous Reyleigh-like equation
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 53-59
Voir la notice de l'article provenant de la source Math-Net.Ru
For a nonlinear Reyleigh-like system with a periodic perturbation, we give some fragments of the study to be connected with the problems of the existence of both chaotic dynamics and invariant tori of certain types. We construct bifurcation diagrams explaining a character of boundaries for regions corresponding to the existence of chaotic dynamics and the invariant tori. Besides, we construct bifurcation curves (for a series of periodic motions) which play the principal role at scenarios of creation of the boundaries pointed out.
Keywords:
dynamical chaos, closed invariant curve, homoclinic tangency, resonance.
Mots-clés : bifurcation set
Mots-clés : bifurcation set
@article{ND_2010_6_1_a2,
author = {L. A. Belyakov and G. V. Belyakova},
title = {Invariant tori and chaotic dynamics in a nonlinear nonautonomous {Reyleigh-like} equation},
journal = {Russian journal of nonlinear dynamics},
pages = {53--59},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a2/}
}
TY - JOUR AU - L. A. Belyakov AU - G. V. Belyakova TI - Invariant tori and chaotic dynamics in a nonlinear nonautonomous Reyleigh-like equation JO - Russian journal of nonlinear dynamics PY - 2010 SP - 53 EP - 59 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a2/ LA - ru ID - ND_2010_6_1_a2 ER -
%0 Journal Article %A L. A. Belyakov %A G. V. Belyakova %T Invariant tori and chaotic dynamics in a nonlinear nonautonomous Reyleigh-like equation %J Russian journal of nonlinear dynamics %D 2010 %P 53-59 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2010_6_1_a2/ %G ru %F ND_2010_6_1_a2
L. A. Belyakov; G. V. Belyakova. Invariant tori and chaotic dynamics in a nonlinear nonautonomous Reyleigh-like equation. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 53-59. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a2/