On coexistence of homoclinic and periodic trajectories
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 207-217

Voir la notice de l'article provenant de la source Math-Net.Ru

The coexistence of different types of homoclinic and periodic trajectories for dynamical systems generated by continuous maps of interval into itself is investigated.
Keywords: homoclinic trajectory, type of periodic trajectory, cycle
Mots-clés : cyclic permutation.
@article{ND_2010_6_1_a14,
     author = {V. V. Fedorenko and A. N. Sharkovsky},
     title = {On coexistence of homoclinic and periodic trajectories},
     journal = {Russian journal of nonlinear dynamics},
     pages = {207--217},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a14/}
}
TY  - JOUR
AU  - V. V. Fedorenko
AU  - A. N. Sharkovsky
TI  - On coexistence of homoclinic and periodic trajectories
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 207
EP  - 217
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a14/
LA  - ru
ID  - ND_2010_6_1_a14
ER  - 
%0 Journal Article
%A V. V. Fedorenko
%A A. N. Sharkovsky
%T On coexistence of homoclinic and periodic trajectories
%J Russian journal of nonlinear dynamics
%D 2010
%P 207-217
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_1_a14/
%G ru
%F ND_2010_6_1_a14
V. V. Fedorenko; A. N. Sharkovsky. On coexistence of homoclinic and periodic trajectories. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 207-217. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a14/