Normalization in the system with two close large delays
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 169-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work deals with local dynamics of difference-differential equation with two delays. Supposed that both delays are asymptotically large and relatively close to each other. In critical cases of equlibrium state stability problem, which all have infinite dimention, special equations — normal forms — were built. Shown that normal forms are Ginzburg–Landau equations.
Keywords: delay, normal forms, multistability, small parameter
Mots-clés : singular perturbations.
@article{ND_2010_6_1_a11,
     author = {I. S. Kashchenko},
     title = {Normalization in the system with two close large delays},
     journal = {Russian journal of nonlinear dynamics},
     pages = {169--180},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a11/}
}
TY  - JOUR
AU  - I. S. Kashchenko
TI  - Normalization in the system with two close large delays
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 169
EP  - 180
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a11/
LA  - ru
ID  - ND_2010_6_1_a11
ER  - 
%0 Journal Article
%A I. S. Kashchenko
%T Normalization in the system with two close large delays
%J Russian journal of nonlinear dynamics
%D 2010
%P 169-180
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_1_a11/
%G ru
%F ND_2010_6_1_a11
I. S. Kashchenko. Normalization in the system with two close large delays. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 169-180. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a11/

[1] Landa P. S., Avtokolebaniya v raspredelennykh sistemakh, Nauka, M., 1983, 320 pp. | MR | Zbl

[2] Dmitriev A. S., Kislov V. Ya., Stokhasticheskie kolebaniya v radiofizike i elektronike, Nauka, M., 1989, 280 pp. | MR | Zbl

[3] Kuznetsov S. P., “Slozhnaya dinamika generatorov s zapazdyvayuschei obratnoi svyazyu (obzor)”, Izv. vuzov. Radiofizika, 25:12 (1982), 1410–1428

[4] \Eng Kilias T., Kutzer K., Moegel A., Schwarz W., “Electromic chaos generators – design and applications”, Internat. J. Electronics, 79:6 (1995), 737–753 | DOI

[5] Kaschenko S. A., Maiorov V. V., Modeli volnovoi pamyati, Librokom, M., 2009, 286 pp.

[6] Kaschenko S. A., “Primenenie metoda normalizatsii k izucheniyu dinamiki differentsialno-raznostnykh uravnenii s malym mnozhitelem pri proizvodnoi”, Differents. ur-niya, 25:8 (1989), 1448–1451 | MR

[7] Kaschenko S. A., “Uravneniya Ginzburga–Landau – normalnaya forma dlya differentsialno-raznostnogo uravneniya vtorogo poryadka s bolshim zapazdyvaniem”, Zhurn. vychislit. matem. i matem. fiz., 38:3 (1998), 457–465 | MR

[8] Kaschenko S. A., “Lokalnaya dinamika nelineinykh singulyarno vozmuschennykh sistem s zapazdyvaniem”, Differents. ur-niya, 35:10 (1999), 1343–1355 | MR

[9] Maistrenko Yu. L., Romanenko E. N., Sharkovskii A. N., Raznostnye uravneniya i ikh prilozheniya, Naukova Dumka, Kiev, 1986, 279 pp. | MR

[10] Kaschenko I. S., “Lokalnaya dinamika uravnenii s bolshim zapazdyvaniem”, Zhurn. vychislit. matem. i matem. fiz., 48:12 (2008), 2141–2150 | MR

[11] Kaschenko I. S., “Asimptoticheskii analiz povedeniya reshenii uravneniya s bolshim zapazdyvaniem”, Dokl. RAN, 421:5 (2008), 586–589

[12] Kaschenko I. S., “Chislennyi analiz lokalnoi dinamiki odnogo uravneniya s zapazdyvaniem”, Matematika, kibernetika, informatika, Tr. mezhdunar. nauchn. konf. pamyati A. Yu. Levina, eds. S. A. Kaschenko, V. A. Sokolov, YarGU, Yaroslavl, 2008, 111–114

[13] Kaschenko I. S., Kaschenko S. A., “Asimptotika slozhnykh prostranstvenno-vremennykh struktur v sistemakh s bolshim zapazdyvaniem”, Izv. vuzov. Prikl. nelinein. dinam., 16:4 (2008), 137–146

[14] Wolfrum M., Yanchuk S., “Eckhaus Instability in Systems with Large Delay”, Phys. Rev. Lett., 96 (2006), 220201 | DOI

[15] Kaschenko I. S., “Bufernost v uravneniyakh vtorogo poryadka s bolshim zapazdyvaniem”, Modelirovanie i analiz informatsionnykh sistem, 15:2 (2008), 31–35 | MR

[16] Kaschenko I. S., “Chislennyi analiz lokalnoi dinamiki odnogo uravneniya s zapazdyvaniem”, Matematika, kibernetika, informatika, Tr. mezhdunar. nauchn. konf. pamyati A. Yu. Levina, eds. S. A. Kaschenko, V. A. Sokolova, YarGU, Yaroslavl, 2008, 111–114