Normalization in the system with two close large delays
Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 169-180

Voir la notice de l'article provenant de la source Math-Net.Ru

This work deals with local dynamics of difference-differential equation with two delays. Supposed that both delays are asymptotically large and relatively close to each other. In critical cases of equlibrium state stability problem, which all have infinite dimention, special equations — normal forms — were built. Shown that normal forms are Ginzburg–Landau equations.
Keywords: delay, normal forms, multistability, small parameter
Mots-clés : singular perturbations.
@article{ND_2010_6_1_a11,
     author = {I. S. Kashchenko},
     title = {Normalization in the system with two close large delays},
     journal = {Russian journal of nonlinear dynamics},
     pages = {169--180},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2010_6_1_a11/}
}
TY  - JOUR
AU  - I. S. Kashchenko
TI  - Normalization in the system with two close large delays
JO  - Russian journal of nonlinear dynamics
PY  - 2010
SP  - 169
EP  - 180
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2010_6_1_a11/
LA  - ru
ID  - ND_2010_6_1_a11
ER  - 
%0 Journal Article
%A I. S. Kashchenko
%T Normalization in the system with two close large delays
%J Russian journal of nonlinear dynamics
%D 2010
%P 169-180
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2010_6_1_a11/
%G ru
%F ND_2010_6_1_a11
I. S. Kashchenko. Normalization in the system with two close large delays. Russian journal of nonlinear dynamics, Tome 6 (2010) no. 1, pp. 169-180. http://geodesic.mathdoc.fr/item/ND_2010_6_1_a11/