On stability of permanent Staude's rotations in a general case of a mass geometry of a rigid body
Russian journal of nonlinear dynamics, Tome 5 (2009) no. 3, pp. 357-375 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Stability of permanent rotations around the vertical of a heavy rigid body with the immovable point (Staude's rotations) is investigated in assumption of a general mass distribution in the body and an arbitrary position of the point of support. In admissible domains of the five-dimensional space of parameters of the problem the detailed linear analysis of stability is carried out. For each set of admissible values of parameters the necessary conditions of stability are received. In a number of cases the sufficient conditions of stability are found.
Mots-clés : Euler–Poisson's equations, permanent rotations
Keywords: cone of Staude, stability.
@article{ND_2009_5_3_a3,
     author = {O. V. Kholostova},
     title = {On stability of permanent {Staude's} rotations in a general case of a mass geometry of a rigid body},
     journal = {Russian journal of nonlinear dynamics},
     pages = {357--375},
     year = {2009},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2009_5_3_a3/}
}
TY  - JOUR
AU  - O. V. Kholostova
TI  - On stability of permanent Staude's rotations in a general case of a mass geometry of a rigid body
JO  - Russian journal of nonlinear dynamics
PY  - 2009
SP  - 357
EP  - 375
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ND_2009_5_3_a3/
LA  - ru
ID  - ND_2009_5_3_a3
ER  - 
%0 Journal Article
%A O. V. Kholostova
%T On stability of permanent Staude's rotations in a general case of a mass geometry of a rigid body
%J Russian journal of nonlinear dynamics
%D 2009
%P 357-375
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/ND_2009_5_3_a3/
%G ru
%F ND_2009_5_3_a3
O. V. Kholostova. On stability of permanent Staude's rotations in a general case of a mass geometry of a rigid body. Russian journal of nonlinear dynamics, Tome 5 (2009) no. 3, pp. 357-375. http://geodesic.mathdoc.fr/item/ND_2009_5_3_a3/