Statistical characteristics of attainable set of controllable system, non-wandering, and minimal attraction center
Russian journal of nonlinear dynamics, Tome 5 (2009) no. 2, pp. 265-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the terms of Lyapunov functions we obtain the conditions that allow to estimate the relative frequency of occurrence of the attainable set of a controllable system in a given set $\mathfrak M$. The set $\mathfrak M$ is called statistically invariant if the relative frequency of occurrence in $\mathfrak M$ is equal to one. We also derive the conditions of the statistically weak invariance of $\mathfrak M$ with respect to controllable system, that is, for every initial point from $\mathfrak M$, at least one solution of the controllable system is statistically invariant. We obtain the conditions for the attainable set to be non-wandering as well as the conditions of existence of the minimal attraction center.
Keywords: controllable systems, dynamical systems, differential inclusions, attainability, invariance, non-wandering, recurrence.
@article{ND_2009_5_2_a7,
     author = {L. I. Rodina and E. L. Tonkov},
     title = {Statistical characteristics of attainable set of controllable system, non-wandering, and minimal attraction center},
     journal = {Russian journal of nonlinear dynamics},
     pages = {265--288},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2009_5_2_a7/}
}
TY  - JOUR
AU  - L. I. Rodina
AU  - E. L. Tonkov
TI  - Statistical characteristics of attainable set of controllable system, non-wandering, and minimal attraction center
JO  - Russian journal of nonlinear dynamics
PY  - 2009
SP  - 265
EP  - 288
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2009_5_2_a7/
LA  - ru
ID  - ND_2009_5_2_a7
ER  - 
%0 Journal Article
%A L. I. Rodina
%A E. L. Tonkov
%T Statistical characteristics of attainable set of controllable system, non-wandering, and minimal attraction center
%J Russian journal of nonlinear dynamics
%D 2009
%P 265-288
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2009_5_2_a7/
%G ru
%F ND_2009_5_2_a7
L. I. Rodina; E. L. Tonkov. Statistical characteristics of attainable set of controllable system, non-wandering, and minimal attraction center. Russian journal of nonlinear dynamics, Tome 5 (2009) no. 2, pp. 265-288. http://geodesic.mathdoc.fr/item/ND_2009_5_2_a7/