The Jacobi problem on a plane
Russian journal of nonlinear dynamics, Tome 5 (2009) no. 1, pp. 83-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

3-particle systems with a particle-interaction homogeneous potential of degree $\alpha= 2$ is considered. A constructive procedure of reduction of the system by $2$ degrees of freedom is performed. The nonintegrability of the systems is shown using the Poincaré mapping.
Mots-clés : multiparticle system
Keywords: potential, Hamiltonian, reduction, integrability.
@article{ND_2009_5_1_a8,
     author = {A. A. Kilin},
     title = {The {Jacobi} problem on a plane},
     journal = {Russian journal of nonlinear dynamics},
     pages = {83--86},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2009_5_1_a8/}
}
TY  - JOUR
AU  - A. A. Kilin
TI  - The Jacobi problem on a plane
JO  - Russian journal of nonlinear dynamics
PY  - 2009
SP  - 83
EP  - 86
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2009_5_1_a8/
LA  - ru
ID  - ND_2009_5_1_a8
ER  - 
%0 Journal Article
%A A. A. Kilin
%T The Jacobi problem on a plane
%J Russian journal of nonlinear dynamics
%D 2009
%P 83-86
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2009_5_1_a8/
%G ru
%F ND_2009_5_1_a8
A. A. Kilin. The Jacobi problem on a plane. Russian journal of nonlinear dynamics, Tome 5 (2009) no. 1, pp. 83-86. http://geodesic.mathdoc.fr/item/ND_2009_5_1_a8/