On the motion of vortex rings in an incompressible media
Russian journal of nonlinear dynamics, Tome 4 (2008) no. 4, pp. 417-428.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the motion of an axisymmetric vortex ring in an incompressible media whose velocity $\overrightarrow{v}$ and density $\rho$ satisfy the equations $div \overrightarrow{v}=0$, $\overrightarrow{v}\cdot\nabla\rho=0$. The second equation allows us to consider the case when the density varies across the ring. It is shown that the media's density can vary only in the vicinity of the flow possessing vorticity and must be constant if the flow is potential. Thus, the ring's velocity and the shape of its atmosphere depend not only on the size of the vortex core and circulation but also on the spatial distribution of the density across the ring.
Mots-clés : incompressible media
Keywords: vortex rings, Maxwell vortex, distribution of the density across a vortex ring.
@article{ND_2008_4_4_a2,
     author = {O. K. Cheremnykh},
     title = {On the motion of vortex rings in an incompressible media},
     journal = {Russian journal of nonlinear dynamics},
     pages = {417--428},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2008_4_4_a2/}
}
TY  - JOUR
AU  - O. K. Cheremnykh
TI  - On the motion of vortex rings in an incompressible media
JO  - Russian journal of nonlinear dynamics
PY  - 2008
SP  - 417
EP  - 428
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2008_4_4_a2/
LA  - ru
ID  - ND_2008_4_4_a2
ER  - 
%0 Journal Article
%A O. K. Cheremnykh
%T On the motion of vortex rings in an incompressible media
%J Russian journal of nonlinear dynamics
%D 2008
%P 417-428
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2008_4_4_a2/
%G ru
%F ND_2008_4_4_a2
O. K. Cheremnykh. On the motion of vortex rings in an incompressible media. Russian journal of nonlinear dynamics, Tome 4 (2008) no. 4, pp. 417-428. http://geodesic.mathdoc.fr/item/ND_2008_4_4_a2/