Algebraic reduction of systems on two- and three-dimensional spheres
Russian journal of nonlinear dynamics, Tome 4 (2008) no. 4, pp. 407-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper develops further the algebraic-reduction method for $SO(4)$-symmetrie systems on the three-dimensional sphere. Canonical variables for the reduced system are constructed both on two-dimensional and three-dimensional spheres. The method is illustrated by applying it to the two-body problem on a sphere (the bodies are assumed to interact with a potential that depends only on the geodesic distance between them) and the three-vortex problem on a two-dimensional sphere.
Mots-clés : Poisson structure. Lie algebra, subalgebra, Andoyer variables.
@article{ND_2008_4_4_a1,
     author = {A. V. Borisov and I. S. Mamaev and S. M. Ramodanov},
     title = {Algebraic reduction of systems on two- and three-dimensional spheres},
     journal = {Russian journal of nonlinear dynamics},
     pages = {407--416},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2008_4_4_a1/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
AU  - S. M. Ramodanov
TI  - Algebraic reduction of systems on two- and three-dimensional spheres
JO  - Russian journal of nonlinear dynamics
PY  - 2008
SP  - 407
EP  - 416
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2008_4_4_a1/
LA  - ru
ID  - ND_2008_4_4_a1
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%A S. M. Ramodanov
%T Algebraic reduction of systems on two- and three-dimensional spheres
%J Russian journal of nonlinear dynamics
%D 2008
%P 407-416
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2008_4_4_a1/
%G ru
%F ND_2008_4_4_a1
A. V. Borisov; I. S. Mamaev; S. M. Ramodanov. Algebraic reduction of systems on two- and three-dimensional spheres. Russian journal of nonlinear dynamics, Tome 4 (2008) no. 4, pp. 407-416. http://geodesic.mathdoc.fr/item/ND_2008_4_4_a1/