Nonlinear evolution equations for description of perturbations in a viscoelastic tube
Russian journal of nonlinear dynamics, Tome 4 (2008) no. 1, pp. 69-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

A quasi-one-dimensional model of flow of a liquid in a viscoelastic tube is considered. A closed system of the nonlinear equations for the description of perturbations of pressure and radius is propose at flow of a liquid in a is viscoelastic tube. For the analysis of system technique of the multiscale method and the perturbation theory is used. The mathematical model was investigated in case of the large Reynolds numbers. In the equation of movement of a wall of a tube the cubic correction to Hooke's law is considered. Families of the nonlinear evolutionary equations for the description of perturbations of the basic characteristics of flow are obtained. Exact solutions of some nonlinear evolution equations are found.
Keywords: viscoelastic tube, nonlinear evolution equations, multiscale method
Mots-clés : exact solutions.
@article{ND_2008_4_1_a3,
     author = {N. A. Kudryashov and D. I. Sinel'shchikov and I. L. Chernyavsky},
     title = {Nonlinear evolution equations for description of perturbations in a viscoelastic tube},
     journal = {Russian journal of nonlinear dynamics},
     pages = {69--86},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2008_4_1_a3/}
}
TY  - JOUR
AU  - N. A. Kudryashov
AU  - D. I. Sinel'shchikov
AU  - I. L. Chernyavsky
TI  - Nonlinear evolution equations for description of perturbations in a viscoelastic tube
JO  - Russian journal of nonlinear dynamics
PY  - 2008
SP  - 69
EP  - 86
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2008_4_1_a3/
LA  - ru
ID  - ND_2008_4_1_a3
ER  - 
%0 Journal Article
%A N. A. Kudryashov
%A D. I. Sinel'shchikov
%A I. L. Chernyavsky
%T Nonlinear evolution equations for description of perturbations in a viscoelastic tube
%J Russian journal of nonlinear dynamics
%D 2008
%P 69-86
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2008_4_1_a3/
%G ru
%F ND_2008_4_1_a3
N. A. Kudryashov; D. I. Sinel'shchikov; I. L. Chernyavsky. Nonlinear evolution equations for description of perturbations in a viscoelastic tube. Russian journal of nonlinear dynamics, Tome 4 (2008) no. 1, pp. 69-86. http://geodesic.mathdoc.fr/item/ND_2008_4_1_a3/