Motion of two spheres in ideal fluid. I.~Equations of motions in the Euclidean space. First integrals and reduction
Russian journal of nonlinear dynamics, Tome 3 (2007) no. 4, pp. 411-422.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the derivation of the equations of motion for two spheres in an unbounded volume of ideal and incompressible fluid in 3D Euclidean space. Reduction of order, based on the use of new variables that form a Lie algebra, is offered. A trivial case of integrability is indicated.
Keywords: motion of two spheres, ideal fluid, reduction, integrability.
@article{ND_2007_3_4_a3,
     author = {A. V. Borisov and I. S. Mamaev and S. M. Ramodanov},
     title = {Motion of two spheres in ideal fluid. {I.~Equations} of motions in the {Euclidean} space. {First} integrals and reduction},
     journal = {Russian journal of nonlinear dynamics},
     pages = {411--422},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2007_3_4_a3/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
AU  - S. M. Ramodanov
TI  - Motion of two spheres in ideal fluid. I.~Equations of motions in the Euclidean space. First integrals and reduction
JO  - Russian journal of nonlinear dynamics
PY  - 2007
SP  - 411
EP  - 422
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2007_3_4_a3/
LA  - ru
ID  - ND_2007_3_4_a3
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%A S. M. Ramodanov
%T Motion of two spheres in ideal fluid. I.~Equations of motions in the Euclidean space. First integrals and reduction
%J Russian journal of nonlinear dynamics
%D 2007
%P 411-422
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2007_3_4_a3/
%G ru
%F ND_2007_3_4_a3
A. V. Borisov; I. S. Mamaev; S. M. Ramodanov. Motion of two spheres in ideal fluid. I.~Equations of motions in the Euclidean space. First integrals and reduction. Russian journal of nonlinear dynamics, Tome 3 (2007) no. 4, pp. 411-422. http://geodesic.mathdoc.fr/item/ND_2007_3_4_a3/