Group theoretical solutions of Schrödinger equation generated by three-dimensional symmetry algebras
Russian journal of nonlinear dynamics, Tome 3 (2007) no. 3, pp. 349-362
Cet article a éte moissonné depuis la source Math-Net.Ru
Nonlinear Schrödinger equation (NSE) has many applications in mathematical physics (nonlinear optics, wave theory and so on). Gagnon and Winternitz have constructed symmetry algebra $L_{12}$ and optimal system of subalgebras for NSE (1989). It's an extension of Galilei algebra $L_{11}$ admitted gas dynamics equations. Its three-dimensional symmetry subalgebras generate 27 different submodels. List of all solutions corresponding to these algebras has been received in this paper. Most of this solutions have not investigate previously.
Keywords:
Schrцdinger equation, Lie algebra, factor system.
Mots-clés : invariant solution, partial invariant solution
Mots-clés : invariant solution, partial invariant solution
@article{ND_2007_3_3_a4,
author = {K. K. Izmailova and A. P. Chupakhin},
title = {Group theoretical solutions of {Schr\"odinger} equation generated by three-dimensional symmetry algebras},
journal = {Russian journal of nonlinear dynamics},
pages = {349--362},
year = {2007},
volume = {3},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2007_3_3_a4/}
}
TY - JOUR AU - K. K. Izmailova AU - A. P. Chupakhin TI - Group theoretical solutions of Schrödinger equation generated by three-dimensional symmetry algebras JO - Russian journal of nonlinear dynamics PY - 2007 SP - 349 EP - 362 VL - 3 IS - 3 UR - http://geodesic.mathdoc.fr/item/ND_2007_3_3_a4/ LA - ru ID - ND_2007_3_3_a4 ER -
%0 Journal Article %A K. K. Izmailova %A A. P. Chupakhin %T Group theoretical solutions of Schrödinger equation generated by three-dimensional symmetry algebras %J Russian journal of nonlinear dynamics %D 2007 %P 349-362 %V 3 %N 3 %U http://geodesic.mathdoc.fr/item/ND_2007_3_3_a4/ %G ru %F ND_2007_3_3_a4
K. K. Izmailova; A. P. Chupakhin. Group theoretical solutions of Schrödinger equation generated by three-dimensional symmetry algebras. Russian journal of nonlinear dynamics, Tome 3 (2007) no. 3, pp. 349-362. http://geodesic.mathdoc.fr/item/ND_2007_3_3_a4/