Critical subsystems of the Kowalevski gyrostat in two constant fields
Russian journal of nonlinear dynamics, Tome 3 (2007) no. 3, pp. 331-348.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kowalevski gyrostat in two constant fields is known as the unique profound example of an integrable Hamiltonian system with three degrees of freedom not reducible to a family of systems in fewer dimensions. As the first approach to topological analysis of this system we find the critical set of the integral map; this set consists of the trajectories with number of frequencies less than three. We obtain the equations of the bifurcation diagram in three-dimensional space of the first integrals constants.
Keywords: Kowalevski gyrostat, two constant fields, critical set, bifurcation diagram.
@article{ND_2007_3_3_a3,
     author = {M. P. Kharlamov},
     title = {Critical subsystems of the {Kowalevski} gyrostat in two constant fields},
     journal = {Russian journal of nonlinear dynamics},
     pages = {331--348},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2007_3_3_a3/}
}
TY  - JOUR
AU  - M. P. Kharlamov
TI  - Critical subsystems of the Kowalevski gyrostat in two constant fields
JO  - Russian journal of nonlinear dynamics
PY  - 2007
SP  - 331
EP  - 348
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2007_3_3_a3/
LA  - ru
ID  - ND_2007_3_3_a3
ER  - 
%0 Journal Article
%A M. P. Kharlamov
%T Critical subsystems of the Kowalevski gyrostat in two constant fields
%J Russian journal of nonlinear dynamics
%D 2007
%P 331-348
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2007_3_3_a3/
%G ru
%F ND_2007_3_3_a3
M. P. Kharlamov. Critical subsystems of the Kowalevski gyrostat in two constant fields. Russian journal of nonlinear dynamics, Tome 3 (2007) no. 3, pp. 331-348. http://geodesic.mathdoc.fr/item/ND_2007_3_3_a3/