Critical subsystems of the Kowalevski gyrostat in two constant fields
Russian journal of nonlinear dynamics, Tome 3 (2007) no. 3, pp. 331-348 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Kowalevski gyrostat in two constant fields is known as the unique profound example of an integrable Hamiltonian system with three degrees of freedom not reducible to a family of systems in fewer dimensions. As the first approach to topological analysis of this system we find the critical set of the integral map; this set consists of the trajectories with number of frequencies less than three. We obtain the equations of the bifurcation diagram in three-dimensional space of the first integrals constants.
Keywords: Kowalevski gyrostat, two constant fields, critical set, bifurcation diagram.
@article{ND_2007_3_3_a3,
     author = {M. P. Kharlamov},
     title = {Critical subsystems of the {Kowalevski} gyrostat in two constant fields},
     journal = {Russian journal of nonlinear dynamics},
     pages = {331--348},
     year = {2007},
     volume = {3},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2007_3_3_a3/}
}
TY  - JOUR
AU  - M. P. Kharlamov
TI  - Critical subsystems of the Kowalevski gyrostat in two constant fields
JO  - Russian journal of nonlinear dynamics
PY  - 2007
SP  - 331
EP  - 348
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ND_2007_3_3_a3/
LA  - ru
ID  - ND_2007_3_3_a3
ER  - 
%0 Journal Article
%A M. P. Kharlamov
%T Critical subsystems of the Kowalevski gyrostat in two constant fields
%J Russian journal of nonlinear dynamics
%D 2007
%P 331-348
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/ND_2007_3_3_a3/
%G ru
%F ND_2007_3_3_a3
M. P. Kharlamov. Critical subsystems of the Kowalevski gyrostat in two constant fields. Russian journal of nonlinear dynamics, Tome 3 (2007) no. 3, pp. 331-348. http://geodesic.mathdoc.fr/item/ND_2007_3_3_a3/