A new integrable problem of motion of point vortices on the sphere
Russian journal of nonlinear dynamics, Tome 3 (2007) no. 2, pp. 211-223
Cet article a éte moissonné depuis la source Math-Net.Ru
The dynamics of an antipodal vortex on a sphere (a point vortex plus its antipode with opposite circulation) is considered. It is shown that the system of $n$ antipodal vortices can be reduced by four dimensions (two degrees of freedom). The cases $n=2,3$ are explored in greater detail both analytically and numerically. We discuss Thomson, collinear and isosceles configurations of antipodal vortices and study their bifurcations.
Keywords:
hydrodynamics, ideal fluid, vortex dynamics, reduction, bifurcation analysis.
Mots-clés : point vortex
Mots-clés : point vortex
@article{ND_2007_3_2_a5,
author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev},
title = {A new integrable problem of motion of point vortices on the sphere},
journal = {Russian journal of nonlinear dynamics},
pages = {211--223},
year = {2007},
volume = {3},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2007_3_2_a5/}
}
TY - JOUR AU - A. V. Borisov AU - A. A. Kilin AU - I. S. Mamaev TI - A new integrable problem of motion of point vortices on the sphere JO - Russian journal of nonlinear dynamics PY - 2007 SP - 211 EP - 223 VL - 3 IS - 2 UR - http://geodesic.mathdoc.fr/item/ND_2007_3_2_a5/ LA - ru ID - ND_2007_3_2_a5 ER -
A. V. Borisov; A. A. Kilin; I. S. Mamaev. A new integrable problem of motion of point vortices on the sphere. Russian journal of nonlinear dynamics, Tome 3 (2007) no. 2, pp. 211-223. http://geodesic.mathdoc.fr/item/ND_2007_3_2_a5/