On the Darboux–Nijenhuis variables on the Poisson manifold $so^*(4)$
Russian journal of nonlinear dynamics, Tome 3 (2007) no. 2, pp. 141-155
Cet article a éte moissonné depuis la source Math-Net.Ru
We classify quadratic Poisson structures on $so^*(4)$ and $e^*(3)$, which have the same foliations by symplectic leaves as canonical Lie-Poisson tensors. The separated variables for some of the corresponding bi-integrable systems are constructed.
Keywords:
integrable system, bi-hamiltonian geometry, separation of variables.
@article{ND_2007_3_2_a1,
author = {A. V. Vershilov and A. V. Tsiganov},
title = {On the {Darboux{\textendash}Nijenhuis} variables on the {Poisson} manifold~$so^*(4)$},
journal = {Russian journal of nonlinear dynamics},
pages = {141--155},
year = {2007},
volume = {3},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2007_3_2_a1/}
}
A. V. Vershilov; A. V. Tsiganov. On the Darboux–Nijenhuis variables on the Poisson manifold $so^*(4)$. Russian journal of nonlinear dynamics, Tome 3 (2007) no. 2, pp. 141-155. http://geodesic.mathdoc.fr/item/ND_2007_3_2_a1/