Rolling of a heterotgeneous ball over a sphere without sliding and spinning
Russian journal of nonlinear dynamics, Tome 2 (2006) no. 4, pp. 445-452.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the problem of rolling a dynamically asymmetric balanced ball (the Chaplygin ball) over a sphere. Suppose that the contact point has zero velocity and the projection of the angular velocity to the normal vector of the sphere equals zero. This model of rolling differs from the classical one. It can be realized, in some approximation, if the ball is rubber coated and the sphere is absolutely rough. Recently, Koiller and Ehlers pointed out the measure and the Hamiltonian structure for this problem. Using this structure we construct an isomorphism between this problem and the problem of the motion of a point on a sphere in some potential field. The integrable cases are found.
Keywords: Chaplygin ball, rolling model, Hamiltonian structure.
@article{ND_2006_2_4_a5,
     author = {A. V. Borisov and I. S. Mamaev},
     title = {Rolling of a heterotgeneous ball over a sphere without sliding and spinning},
     journal = {Russian journal of nonlinear dynamics},
     pages = {445--452},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2006_2_4_a5/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - Rolling of a heterotgeneous ball over a sphere without sliding and spinning
JO  - Russian journal of nonlinear dynamics
PY  - 2006
SP  - 445
EP  - 452
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2006_2_4_a5/
LA  - ru
ID  - ND_2006_2_4_a5
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%T Rolling of a heterotgeneous ball over a sphere without sliding and spinning
%J Russian journal of nonlinear dynamics
%D 2006
%P 445-452
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2006_2_4_a5/
%G ru
%F ND_2006_2_4_a5
A. V. Borisov; I. S. Mamaev. Rolling of a heterotgeneous ball over a sphere without sliding and spinning. Russian journal of nonlinear dynamics, Tome 2 (2006) no. 4, pp. 445-452. http://geodesic.mathdoc.fr/item/ND_2006_2_4_a5/