Vortex dynamics of wakes
Russian journal of nonlinear dynamics, Tome 2 (2006) no. 4, pp. 411-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several problems related to the dynamics of vortex patterns as observed in wake flows are addressed. These include: The universal Strouhal–Reynolds number relation. The Hamiltonian dynamics of point vortices in a periodic strip, both the classical two-vortices-in-a-strip problem, which gives the structure and self-induced velocity of the traditional vortex street, and the three-vortices- in-a-strip problem, which is argued to be relevant to the wake behind an oscillating body. The bifurcation diagram for wake structure found experimentally by Williamson and Roshko is addressed theoretically.
Keywords: Strouhal-Reynolds number, vorticity, three-vortices-in-a-strip problem, bifurcation diagram.
@article{ND_2006_2_4_a2,
     author = {Hassan Aref},
     title = {Vortex dynamics of wakes},
     journal = {Russian journal of nonlinear dynamics},
     pages = {411--424},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2006_2_4_a2/}
}
TY  - JOUR
AU  - Hassan Aref
TI  - Vortex dynamics of wakes
JO  - Russian journal of nonlinear dynamics
PY  - 2006
SP  - 411
EP  - 424
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2006_2_4_a2/
LA  - ru
ID  - ND_2006_2_4_a2
ER  - 
%0 Journal Article
%A Hassan Aref
%T Vortex dynamics of wakes
%J Russian journal of nonlinear dynamics
%D 2006
%P 411-424
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2006_2_4_a2/
%G ru
%F ND_2006_2_4_a2
Hassan Aref. Vortex dynamics of wakes. Russian journal of nonlinear dynamics, Tome 2 (2006) no. 4, pp. 411-424. http://geodesic.mathdoc.fr/item/ND_2006_2_4_a2/