Stability of steady rotations in the non-holonomic Routh problem
Russian journal of nonlinear dynamics, Tome 2 (2006) no. 3, pp. 333-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have discovered a new first integral in the problem of motion of a dynamically symmetric ball, subject to gravity, on the surface of a paraboloid. Using this integral, we have obtained conditions for stability (in the Lyapunov sense) of steady rotations of the ball in the upmost, downmost and saddle point.
Keywords: nonholonomic constraint, stationary rotations, stability.
@article{ND_2006_2_3_a5,
     author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev},
     title = {Stability of steady rotations in the non-holonomic {Routh} problem},
     journal = {Russian journal of nonlinear dynamics},
     pages = {333--345},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2006_2_3_a5/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - A. A. Kilin
AU  - I. S. Mamaev
TI  - Stability of steady rotations in the non-holonomic Routh problem
JO  - Russian journal of nonlinear dynamics
PY  - 2006
SP  - 333
EP  - 345
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2006_2_3_a5/
LA  - ru
ID  - ND_2006_2_3_a5
ER  - 
%0 Journal Article
%A A. V. Borisov
%A A. A. Kilin
%A I. S. Mamaev
%T Stability of steady rotations in the non-holonomic Routh problem
%J Russian journal of nonlinear dynamics
%D 2006
%P 333-345
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2006_2_3_a5/
%G ru
%F ND_2006_2_3_a5
A. V. Borisov; A. A. Kilin; I. S. Mamaev. Stability of steady rotations in the non-holonomic Routh problem. Russian journal of nonlinear dynamics, Tome 2 (2006) no. 3, pp. 333-345. http://geodesic.mathdoc.fr/item/ND_2006_2_3_a5/