Stability of steady rotations in the non-holonomic Routh problem
Russian journal of nonlinear dynamics, Tome 2 (2006) no. 3, pp. 333-345
Voir la notice de l'article provenant de la source Math-Net.Ru
We have discovered a new first integral in the problem of motion of a dynamically symmetric ball, subject to gravity, on the surface of a paraboloid. Using this integral, we have obtained conditions for stability (in the Lyapunov sense) of steady rotations of the ball in the upmost, downmost and saddle point.
Keywords:
nonholonomic constraint, stationary rotations, stability.
@article{ND_2006_2_3_a5,
author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev},
title = {Stability of steady rotations in the non-holonomic {Routh} problem},
journal = {Russian journal of nonlinear dynamics},
pages = {333--345},
publisher = {mathdoc},
volume = {2},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2006_2_3_a5/}
}
TY - JOUR AU - A. V. Borisov AU - A. A. Kilin AU - I. S. Mamaev TI - Stability of steady rotations in the non-holonomic Routh problem JO - Russian journal of nonlinear dynamics PY - 2006 SP - 333 EP - 345 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2006_2_3_a5/ LA - ru ID - ND_2006_2_3_a5 ER -
A. V. Borisov; A. A. Kilin; I. S. Mamaev. Stability of steady rotations in the non-holonomic Routh problem. Russian journal of nonlinear dynamics, Tome 2 (2006) no. 3, pp. 333-345. http://geodesic.mathdoc.fr/item/ND_2006_2_3_a5/