Phase flows in $J^{n}(\pi)$
Russian journal of nonlinear dynamics, Tome 2 (2006) no. 3, pp. 287-292
Cet article a éte moissonné depuis la source Math-Net.Ru
On the basis of Liouville theorem the generalization of the Nambu mechanics is considered. Is shown, that Poisson manifolds of $n$-dimensional multi-symplectic phase space have inducting by $(n-1)$ Hamilton $k$-vectors fields, each of which requires of $(k)$-hamiltonians.
Mots-clés :
Liouville theorem
Keywords: Hamilton vectors fields.
Keywords: Hamilton vectors fields.
@article{ND_2006_2_3_a2,
author = {V. N. Dumachev},
title = {Phase flows in $J^{n}(\pi)$},
journal = {Russian journal of nonlinear dynamics},
pages = {287--292},
year = {2006},
volume = {2},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2006_2_3_a2/}
}
V. N. Dumachev. Phase flows in $J^{n}(\pi)$. Russian journal of nonlinear dynamics, Tome 2 (2006) no. 3, pp. 287-292. http://geodesic.mathdoc.fr/item/ND_2006_2_3_a2/