Phase flows in $J^{n}(\pi)$
Russian journal of nonlinear dynamics, Tome 2 (2006) no. 3, pp. 287-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of Liouville theorem the generalization of the Nambu mechanics is considered. Is shown, that Poisson manifolds of $n$-dimensional multi-symplectic phase space have inducting by $(n-1)$ Hamilton $k$-vectors fields, each of which requires of $(k)$-hamiltonians.
Mots-clés : Liouville theorem
Keywords: Hamilton vectors fields.
@article{ND_2006_2_3_a2,
     author = {V. N. Dumachev},
     title = {Phase flows in $J^{n}(\pi)$},
     journal = {Russian journal of nonlinear dynamics},
     pages = {287--292},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2006_2_3_a2/}
}
TY  - JOUR
AU  - V. N. Dumachev
TI  - Phase flows in $J^{n}(\pi)$
JO  - Russian journal of nonlinear dynamics
PY  - 2006
SP  - 287
EP  - 292
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2006_2_3_a2/
LA  - ru
ID  - ND_2006_2_3_a2
ER  - 
%0 Journal Article
%A V. N. Dumachev
%T Phase flows in $J^{n}(\pi)$
%J Russian journal of nonlinear dynamics
%D 2006
%P 287-292
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2006_2_3_a2/
%G ru
%F ND_2006_2_3_a2
V. N. Dumachev. Phase flows in $J^{n}(\pi)$. Russian journal of nonlinear dynamics, Tome 2 (2006) no. 3, pp. 287-292. http://geodesic.mathdoc.fr/item/ND_2006_2_3_a2/