Quantum chaos
Russian journal of nonlinear dynamics, Tome 2 (2006) no. 2, pp. 214-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

A short historical overview is given on the development of our knowledge of complex dynamical systems with special emphasis on ergodicity and chaos, and on the semiclassical quantization of integrable and chaotic systems. The general trace formula is discussed as a sound mathematical basis for the semiclassical quantization of chaos. Two conjectures are presented on the basis of which it is argued that there are unique fluctuation properties in quantum mechanics which are universal and, in a well defined sense, maximally random if the corresponding classical system is strongly chaotic. These properties constitute the quantum mechanical analogue of the phenomenon of chaos in classical mechanics. Thus quantum chaos has been found.
Keywords: quantum chaos, integrable system
Mots-clés : billiard, torus.
@article{ND_2006_2_2_a5,
     author = {F. Steiner},
     title = {Quantum chaos},
     journal = {Russian journal of nonlinear dynamics},
     pages = {214--235},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2006_2_2_a5/}
}
TY  - JOUR
AU  - F. Steiner
TI  - Quantum chaos
JO  - Russian journal of nonlinear dynamics
PY  - 2006
SP  - 214
EP  - 235
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2006_2_2_a5/
LA  - ru
ID  - ND_2006_2_2_a5
ER  - 
%0 Journal Article
%A F. Steiner
%T Quantum chaos
%J Russian journal of nonlinear dynamics
%D 2006
%P 214-235
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2006_2_2_a5/
%G ru
%F ND_2006_2_2_a5
F. Steiner. Quantum chaos. Russian journal of nonlinear dynamics, Tome 2 (2006) no. 2, pp. 214-235. http://geodesic.mathdoc.fr/item/ND_2006_2_2_a5/