Interaction between Kirchhoff vortices and point vortices in an ideal fluid
Russian journal of nonlinear dynamics, Tome 2 (2006) no. 2, pp. 199-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the interaction of two vortex patches (elliptic Kirchhoff vortices) which move in an unbounded volume of an ideal incompressible fluid. A moment second-order model is used to describe the interaction. The case of integrability of a Kirchhoff vortex and a point vortex by the variable separation method is qualitatively analyzed. A new case of integrability of two Kirchhoff vortices is found. A reduced form of equations for two Kirchhoff vortices is proposed and used to analyze their regular and chaotic behavior.
Keywords: Kirchhoff vortices, integrability, Hamiltonian, stability
Mots-clés : point vortex.
@article{ND_2006_2_2_a4,
     author = {A. V. Borisov and I. S. Mamaev},
     title = {Interaction between {Kirchhoff} vortices and point vortices in an ideal fluid},
     journal = {Russian journal of nonlinear dynamics},
     pages = {199--213},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2006_2_2_a4/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - Interaction between Kirchhoff vortices and point vortices in an ideal fluid
JO  - Russian journal of nonlinear dynamics
PY  - 2006
SP  - 199
EP  - 213
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2006_2_2_a4/
LA  - ru
ID  - ND_2006_2_2_a4
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%T Interaction between Kirchhoff vortices and point vortices in an ideal fluid
%J Russian journal of nonlinear dynamics
%D 2006
%P 199-213
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2006_2_2_a4/
%G ru
%F ND_2006_2_2_a4
A. V. Borisov; I. S. Mamaev. Interaction between Kirchhoff vortices and point vortices in an ideal fluid. Russian journal of nonlinear dynamics, Tome 2 (2006) no. 2, pp. 199-213. http://geodesic.mathdoc.fr/item/ND_2006_2_2_a4/