Dynamics of two vortex rings on a sphere
Russian journal of nonlinear dynamics, Tome 2 (2006) no. 2, pp. 181-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

The motion of two vortex rings on a sphere is considered. This motion generalizes the well-known centrally symmetrical solution of the equations of point vortex dynamics on a plane derived by D. N. Goryachev and H. Aref. The equations of motion in this case are shown to be Liouville integrable, and an explicit reduction to a Hamiltonian system with one degree of freedom is described. Two particular cases in which the solutions are periodical are presented. Explicit quadratures are given for these solutions. Phase portraits are described and bifurcation diagrams are shown for centrally symmetrical motion of four vortices on a sphere.
Mots-clés : vortex, phase portrait.
Keywords: Hamiltonian, motion on a sphere
@article{ND_2006_2_2_a2,
     author = {A. V. Borisov and I. S. Mamaev},
     title = {Dynamics of two vortex rings on a sphere},
     journal = {Russian journal of nonlinear dynamics},
     pages = {181--192},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2006_2_2_a2/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - Dynamics of two vortex rings on a sphere
JO  - Russian journal of nonlinear dynamics
PY  - 2006
SP  - 181
EP  - 192
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2006_2_2_a2/
LA  - ru
ID  - ND_2006_2_2_a2
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%T Dynamics of two vortex rings on a sphere
%J Russian journal of nonlinear dynamics
%D 2006
%P 181-192
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2006_2_2_a2/
%G ru
%F ND_2006_2_2_a2
A. V. Borisov; I. S. Mamaev. Dynamics of two vortex rings on a sphere. Russian journal of nonlinear dynamics, Tome 2 (2006) no. 2, pp. 181-192. http://geodesic.mathdoc.fr/item/ND_2006_2_2_a2/