The Feynman-Kac-Ito formula for an infinite-dimensional Schr\"odinger equation with scalar and vector potentials
Russian journal of nonlinear dynamics, Tome 2 (2006) no. 1, pp. 75-87
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an infinite-dimensional Schrödinger equation with scalar and vector potentials in a Hilbert space. The vector potential plays the same role as a magnetic field in the finite-dimensional case. We have proved the existence of the solution to the Cauchy problem. The solution is local in time and space variables and is expressed by a probabilistic formula of Feynman–Kac–Ito type.
Keywords:
infinite dimensional Schrödinger equation, stochastic integrals, vector potential, functional integrals.
Mots-clés : Feynman–Kac–Ito formula
Mots-clés : Feynman–Kac–Ito formula
@article{ND_2006_2_1_a3,
author = {Ya. A. Butko},
title = {The {Feynman-Kac-Ito} formula for an infinite-dimensional {Schr\"odinger} equation with scalar and vector potentials},
journal = {Russian journal of nonlinear dynamics},
pages = {75--87},
publisher = {mathdoc},
volume = {2},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2006_2_1_a3/}
}
TY - JOUR AU - Ya. A. Butko TI - The Feynman-Kac-Ito formula for an infinite-dimensional Schr\"odinger equation with scalar and vector potentials JO - Russian journal of nonlinear dynamics PY - 2006 SP - 75 EP - 87 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2006_2_1_a3/ LA - ru ID - ND_2006_2_1_a3 ER -
%0 Journal Article %A Ya. A. Butko %T The Feynman-Kac-Ito formula for an infinite-dimensional Schr\"odinger equation with scalar and vector potentials %J Russian journal of nonlinear dynamics %D 2006 %P 75-87 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2006_2_1_a3/ %G ru %F ND_2006_2_1_a3
Ya. A. Butko. The Feynman-Kac-Ito formula for an infinite-dimensional Schr\"odinger equation with scalar and vector potentials. Russian journal of nonlinear dynamics, Tome 2 (2006) no. 1, pp. 75-87. http://geodesic.mathdoc.fr/item/ND_2006_2_1_a3/