The Feynman-Kac-Ito formula for an infinite-dimensional Schr\"odinger equation with scalar and vector potentials
Russian journal of nonlinear dynamics, Tome 2 (2006) no. 1, pp. 75-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an infinite-dimensional Schrödinger equation with scalar and vector potentials in a Hilbert space. The vector potential plays the same role as a magnetic field in the finite-dimensional case. We have proved the existence of the solution to the Cauchy problem. The solution is local in time and space variables and is expressed by a probabilistic formula of Feynman–Kac–Ito type.
Keywords: infinite dimensional Schrödinger equation, stochastic integrals, vector potential, functional integrals.
Mots-clés : Feynman–Kac–Ito formula
@article{ND_2006_2_1_a3,
     author = {Ya. A. Butko},
     title = {The {Feynman-Kac-Ito} formula for an infinite-dimensional {Schr\"odinger} equation with scalar and vector potentials},
     journal = {Russian journal of nonlinear dynamics},
     pages = {75--87},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2006_2_1_a3/}
}
TY  - JOUR
AU  - Ya. A. Butko
TI  - The Feynman-Kac-Ito formula for an infinite-dimensional Schr\"odinger equation with scalar and vector potentials
JO  - Russian journal of nonlinear dynamics
PY  - 2006
SP  - 75
EP  - 87
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2006_2_1_a3/
LA  - ru
ID  - ND_2006_2_1_a3
ER  - 
%0 Journal Article
%A Ya. A. Butko
%T The Feynman-Kac-Ito formula for an infinite-dimensional Schr\"odinger equation with scalar and vector potentials
%J Russian journal of nonlinear dynamics
%D 2006
%P 75-87
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2006_2_1_a3/
%G ru
%F ND_2006_2_1_a3
Ya. A. Butko. The Feynman-Kac-Ito formula for an infinite-dimensional Schr\"odinger equation with scalar and vector potentials. Russian journal of nonlinear dynamics, Tome 2 (2006) no. 1, pp. 75-87. http://geodesic.mathdoc.fr/item/ND_2006_2_1_a3/