Some properties of motion of $A+1$ vortices in a two-layer rotating fluid
Russian journal of nonlinear dynamics, Tome 2 (2006) no. 1, pp. 27-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper explores the properties of motion of $A+1$ point vortices with $A$ planes of symmetry immersed into a two-layer fluid. The central vortex is supposed to be in the upper layer while the other $A$ vortices have equal intensity and form a regular $A$-gon configuration in the lower layer. For $A\ge 2$, we study possible stationary motions. For $A=2$, using methods of qualitative analysis, we classify the motions of this vortical structure and obtain preliminary numerical results concerned with stability of symmetrical configurations.
Keywords: two-layer fluid, choreography
Mots-clés : point vortex, vortex structures, phase portrait.
@article{ND_2006_2_1_a1,
     author = {M. A. Sokolovskiy and J. Verron},
     title = {Some properties of motion of $A+1$ vortices in a two-layer rotating fluid},
     journal = {Russian journal of nonlinear dynamics},
     pages = {27--54},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2006_2_1_a1/}
}
TY  - JOUR
AU  - M. A. Sokolovskiy
AU  - J. Verron
TI  - Some properties of motion of $A+1$ vortices in a two-layer rotating fluid
JO  - Russian journal of nonlinear dynamics
PY  - 2006
SP  - 27
EP  - 54
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2006_2_1_a1/
LA  - ru
ID  - ND_2006_2_1_a1
ER  - 
%0 Journal Article
%A M. A. Sokolovskiy
%A J. Verron
%T Some properties of motion of $A+1$ vortices in a two-layer rotating fluid
%J Russian journal of nonlinear dynamics
%D 2006
%P 27-54
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2006_2_1_a1/
%G ru
%F ND_2006_2_1_a1
M. A. Sokolovskiy; J. Verron. Some properties of motion of $A+1$ vortices in a two-layer rotating fluid. Russian journal of nonlinear dynamics, Tome 2 (2006) no. 1, pp. 27-54. http://geodesic.mathdoc.fr/item/ND_2006_2_1_a1/