Chaos in a restricted problem of rotation of a rigid body with a fixed point
Russian journal of nonlinear dynamics, Tome 1 (2005) no. 2, pp. 191-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a transition to chaos in the phase-plane portrait of a restricted problem of rotation of a rigid body with a fixed point. Two interrelated mechanisms responsible for chaotisation have been indicated: 1) growth of the homoclinic structure and 2) development of cascades of period doubling bifurcations. On the zero level of the integral of areas, an adiabatic behavior of the system (as the energy tends to zero) has been noticed. Meander tori induced by the breakdown of the torsion property of the mapping have been found.
Keywords: motion of a rigid body
Mots-clés : phase-plane portrait, mechanism of chaotisation, bifurcations.
@article{ND_2005_1_2_a2,
     author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev},
     title = {Chaos in a restricted problem of rotation of a rigid body with a fixed point},
     journal = {Russian journal of nonlinear dynamics},
     pages = {191--207},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2005_1_2_a2/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - A. A. Kilin
AU  - I. S. Mamaev
TI  - Chaos in a restricted problem of rotation of a rigid body with a fixed point
JO  - Russian journal of nonlinear dynamics
PY  - 2005
SP  - 191
EP  - 207
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2005_1_2_a2/
LA  - ru
ID  - ND_2005_1_2_a2
ER  - 
%0 Journal Article
%A A. V. Borisov
%A A. A. Kilin
%A I. S. Mamaev
%T Chaos in a restricted problem of rotation of a rigid body with a fixed point
%J Russian journal of nonlinear dynamics
%D 2005
%P 191-207
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2005_1_2_a2/
%G ru
%F ND_2005_1_2_a2
A. V. Borisov; A. A. Kilin; I. S. Mamaev. Chaos in a restricted problem of rotation of a rigid body with a fixed point. Russian journal of nonlinear dynamics, Tome 1 (2005) no. 2, pp. 191-207. http://geodesic.mathdoc.fr/item/ND_2005_1_2_a2/