A note by Poincaré
Russian journal of nonlinear dynamics, Tome 1 (2005) no. 1, pp. 143-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On November 30th 1896, Poincaré published a note entitled “On the periodic solutions and the least action principle” in the “Comptes rendus de l'Académie des Sciences”. He proposed to find periodic solutions of the planar Three-Body Problem by minimizing the Lagrangian action among loops in the configuration space which satisfy given constraints (the constraints amount to fixing their homology class). For the Newtonian potential, proportional to the inverse of the distance, the “collision problem” prevented him from realizing his program; hence he replaced it by a “strong force potential” proportional to the inverse of the squared distance. In the lecture, the nature of the difficulties met by Poincaré is explained and it is shown how, one century later, these have been partially resolved for the Newtonian potential, leading to the discovery of new remarkable families of periodic solutions of the planar or spatial $n$-body problem.
Mots-clés : Poincaré
Keywords: three-body problem, action minimizing periodic solutions.
@article{ND_2005_1_1_a7,
     author = {A. Chenciner},
     title = {A note by {Poincar\'e}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {143--154},
     year = {2005},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2005_1_1_a7/}
}
TY  - JOUR
AU  - A. Chenciner
TI  - A note by Poincaré
JO  - Russian journal of nonlinear dynamics
PY  - 2005
SP  - 143
EP  - 154
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ND_2005_1_1_a7/
LA  - ru
ID  - ND_2005_1_1_a7
ER  - 
%0 Journal Article
%A A. Chenciner
%T A note by Poincaré
%J Russian journal of nonlinear dynamics
%D 2005
%P 143-154
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/ND_2005_1_1_a7/
%G ru
%F ND_2005_1_1_a7
A. Chenciner. A note by Poincaré. Russian journal of nonlinear dynamics, Tome 1 (2005) no. 1, pp. 143-154. http://geodesic.mathdoc.fr/item/ND_2005_1_1_a7/