Bifurcations of the integral manifolds in the problem on motion of a heavy gyrostat
Russian journal of nonlinear dynamics, Tome 1 (2005) no. 1, pp. 33-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the topological structure of a common level surfaces of the first integrals in the problem on motion of a heavy gyrostat about a fixed point. We consider the special case when the gyrostatic momentum is collinear with the center-of-mass vector. With this supposition the axes of steady rotations can be directed only along generatrices of the Staude cone. We investigate the critical points of the effective potential, classify the bifurcation diagrams on the plane of constants of the first integrals and give a complete description of the topology of nonsingular integral manifolds of this problem.
Keywords: gyrostat, integral manifolds, steady rotations.
Mots-clés : bifurcation set
@article{ND_2005_1_1_a2,
     author = {I. N. Gashenenko},
     title = {Bifurcations of the integral manifolds in the problem on motion of a heavy gyrostat},
     journal = {Russian journal of nonlinear dynamics},
     pages = {33--52},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2005_1_1_a2/}
}
TY  - JOUR
AU  - I. N. Gashenenko
TI  - Bifurcations of the integral manifolds in the problem on motion of a heavy gyrostat
JO  - Russian journal of nonlinear dynamics
PY  - 2005
SP  - 33
EP  - 52
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2005_1_1_a2/
LA  - ru
ID  - ND_2005_1_1_a2
ER  - 
%0 Journal Article
%A I. N. Gashenenko
%T Bifurcations of the integral manifolds in the problem on motion of a heavy gyrostat
%J Russian journal of nonlinear dynamics
%D 2005
%P 33-52
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2005_1_1_a2/
%G ru
%F ND_2005_1_1_a2
I. N. Gashenenko. Bifurcations of the integral manifolds in the problem on motion of a heavy gyrostat. Russian journal of nonlinear dynamics, Tome 1 (2005) no. 1, pp. 33-52. http://geodesic.mathdoc.fr/item/ND_2005_1_1_a2/