The point spectrum of the three-particle Schr\"odinger operator for a system comprising two identical bosons and one fermion on $\mathbb{Z}$
Nanosistemy: fizika, himiâ, matematika, Tome 15 (2024) no. 4, pp. 438-447.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Hamiltonian of a system of three quantum particles (two identical bosons and a fermion) on the one-dimensional lattice interacting by means of zero-range attractive or repulsive potentials. We investigate the point spectrum of the three-particle discrete Schrödinger operator $H(K)$, $K\in\mathbb{T}$ which possesses infinitely many eigenvalues depending on repulsive or attractive interactions, under the assumption that the bosons in the system have infinite mass.
Keywords: Schrödinger operator, dispersion functions, zero-range pair potentials, discrete spectrum, essential spectrum.
@article{NANO_2024_15_4_a0,
     author = {Zahriddin I. Muminov and V. U. Aktamova},
     title = {The point spectrum of the three-particle {Schr\"odinger} operator for a system comprising two identical bosons and one fermion on $\mathbb{Z}$},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {438--447},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2024_15_4_a0/}
}
TY  - JOUR
AU  - Zahriddin I. Muminov
AU  - V. U. Aktamova
TI  - The point spectrum of the three-particle Schr\"odinger operator for a system comprising two identical bosons and one fermion on $\mathbb{Z}$
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2024
SP  - 438
EP  - 447
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2024_15_4_a0/
LA  - en
ID  - NANO_2024_15_4_a0
ER  - 
%0 Journal Article
%A Zahriddin I. Muminov
%A V. U. Aktamova
%T The point spectrum of the three-particle Schr\"odinger operator for a system comprising two identical bosons and one fermion on $\mathbb{Z}$
%J Nanosistemy: fizika, himiâ, matematika
%D 2024
%P 438-447
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2024_15_4_a0/
%G en
%F NANO_2024_15_4_a0
Zahriddin I. Muminov; V. U. Aktamova. The point spectrum of the three-particle Schr\"odinger operator for a system comprising two identical bosons and one fermion on $\mathbb{Z}$. Nanosistemy: fizika, himiâ, matematika, Tome 15 (2024) no. 4, pp. 438-447. http://geodesic.mathdoc.fr/item/NANO_2024_15_4_a0/