The point spectrum of the three-particle Schr\"odinger operator for a system comprising two identical bosons and one fermion on $\mathbb{Z}$
Nanosistemy: fizika, himiâ, matematika, Tome 15 (2024) no. 4, pp. 438-447
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Hamiltonian of a system of three quantum particles (two identical bosons and a fermion) on the one-dimensional lattice interacting by means of zero-range attractive or repulsive potentials. We investigate the point spectrum of the three-particle discrete Schrödinger operator $H(K)$, $K\in\mathbb{T}$ which possesses infinitely many eigenvalues depending on repulsive or attractive interactions, under the assumption that the bosons in the system have infinite mass.
Keywords:
Schrödinger operator, dispersion functions, zero-range pair potentials, discrete spectrum, essential spectrum.
@article{NANO_2024_15_4_a0,
author = {Zahriddin I. Muminov and V. U. Aktamova},
title = {The point spectrum of the three-particle {Schr\"odinger} operator for a system comprising two identical bosons and one fermion on $\mathbb{Z}$},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {438--447},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2024_15_4_a0/}
}
TY - JOUR
AU - Zahriddin I. Muminov
AU - V. U. Aktamova
TI - The point spectrum of the three-particle Schr\"odinger operator for a system comprising two identical bosons and one fermion on $\mathbb{Z}$
JO - Nanosistemy: fizika, himiâ, matematika
PY - 2024
SP - 438
EP - 447
VL - 15
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/NANO_2024_15_4_a0/
LA - en
ID - NANO_2024_15_4_a0
ER -
%0 Journal Article
%A Zahriddin I. Muminov
%A V. U. Aktamova
%T The point spectrum of the three-particle Schr\"odinger operator for a system comprising two identical bosons and one fermion on $\mathbb{Z}$
%J Nanosistemy: fizika, himiâ, matematika
%D 2024
%P 438-447
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2024_15_4_a0/
%G en
%F NANO_2024_15_4_a0
Zahriddin I. Muminov; V. U. Aktamova. The point spectrum of the three-particle Schr\"odinger operator for a system comprising two identical bosons and one fermion on $\mathbb{Z}$. Nanosistemy: fizika, himiâ, matematika, Tome 15 (2024) no. 4, pp. 438-447. http://geodesic.mathdoc.fr/item/NANO_2024_15_4_a0/