Voir la notice de l'article provenant de la source Math-Net.Ru
@article{NANO_2024_15_1_a0, author = {Y. Bekakra and A. Bouziani}, title = {Existence and uniqueness theorem for a weak solution of fractional parabolic problem by the {Rothe} method}, journal = {Nanosistemy: fizika, himi\^a, matematika}, pages = {5--15}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/NANO_2024_15_1_a0/} }
TY - JOUR AU - Y. Bekakra AU - A. Bouziani TI - Existence and uniqueness theorem for a weak solution of fractional parabolic problem by the Rothe method JO - Nanosistemy: fizika, himiâ, matematika PY - 2024 SP - 5 EP - 15 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2024_15_1_a0/ LA - en ID - NANO_2024_15_1_a0 ER -
%0 Journal Article %A Y. Bekakra %A A. Bouziani %T Existence and uniqueness theorem for a weak solution of fractional parabolic problem by the Rothe method %J Nanosistemy: fizika, himiâ, matematika %D 2024 %P 5-15 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/NANO_2024_15_1_a0/ %G en %F NANO_2024_15_1_a0
Y. Bekakra; A. Bouziani. Existence and uniqueness theorem for a weak solution of fractional parabolic problem by the Rothe method. Nanosistemy: fizika, himiâ, matematika, Tome 15 (2024) no. 1, pp. 5-15. http://geodesic.mathdoc.fr/item/NANO_2024_15_1_a0/