Verification of continuum-based model of carbon materials
Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 5, pp. 539-543.

Voir la notice de l'article provenant de la source Math-Net.Ru

The continuous medium approximation to the description of a carbon material previously used to model the properties of spherical carbon shells of nanometer diameter. This approach is based on the transition from lattice operators to field operators. The present study verifies the given model evaluating the energy spectrum of electrons in a perfect flat carbon monolayer. An implementation of the Dirac cones within the continuous medium framework is demonstrated. Its are close to the positions of the vertices of the Brillouin zone for graphene. Increase of the Taylor series expansion order of field operators makes the result precise, and the approximate positions of the Dirac cones match the exact data for graphene.
Keywords: carbon lattice, continuum model, Dirac cone.
@article{NANO_2023_14_5_a4,
     author = {Kirill B. Tsiberkin},
     title = {Verification of continuum-based model of carbon materials},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {539--543},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a4/}
}
TY  - JOUR
AU  - Kirill B. Tsiberkin
TI  - Verification of continuum-based model of carbon materials
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2023
SP  - 539
EP  - 543
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a4/
LA  - en
ID  - NANO_2023_14_5_a4
ER  - 
%0 Journal Article
%A Kirill B. Tsiberkin
%T Verification of continuum-based model of carbon materials
%J Nanosistemy: fizika, himiâ, matematika
%D 2023
%P 539-543
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a4/
%G en
%F NANO_2023_14_5_a4
Kirill B. Tsiberkin. Verification of continuum-based model of carbon materials. Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 5, pp. 539-543. http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a4/