On the discrete spectrum of the Schr\"odinger operator using the 2+1 fermionic trimer on the lattice
Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 5, pp. 518-529.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the three-particle discrete Schrödinger operator $H_{\mu,\gamma}(\mathbf{K})$, $\mathbf{K}\in\mathbb{T}^3$, associated with the three-particle Hamiltonian (two of them are fermions with mass 1 and one of them is arbitrary with mass $m=1/\gamma1$), interacting via pair of repulsive contact potentials $\mu>0$ on a three-dimensional lattice $\mathbb{Z}^3$. It is proved that there are critical values of mass ratios $\gamma=\gamma_1$ and $\gamma=\gamma_2$ such that if $\gamma\in(0,\gamma_1)$, then the operator $H_{\mu,\gamma}(0)$ has no eigenvalues. If $\gamma\in(\gamma_1,\gamma_2)$, then the operator $H_{\mu,\gamma}(0)$ has a unique eigenvalue; if $\gamma>\gamma_2$, then the operator $H_{\mu,\gamma}(0)$ has three eigenvalues lying to the right of the essential spectrum for all sufficiently large values of the interaction energy $\mu$.
Keywords: Schrödinger operator, Hamiltonian, contact potential, eigenvalue, quasi-momentum, invariant subspace, Faddeev operator.
Mots-clés : fermion
@article{NANO_2023_14_5_a2,
     author = {Ahmad M. Khalkhuzhaev and Islom. A. Khujamiyorov},
     title = {On the discrete spectrum of the {Schr\"odinger} operator using the 2+1 fermionic trimer on the lattice},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {518--529},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a2/}
}
TY  - JOUR
AU  - Ahmad M. Khalkhuzhaev
AU  - Islom. A. Khujamiyorov
TI  - On the discrete spectrum of the Schr\"odinger operator using the 2+1 fermionic trimer on the lattice
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2023
SP  - 518
EP  - 529
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a2/
LA  - en
ID  - NANO_2023_14_5_a2
ER  - 
%0 Journal Article
%A Ahmad M. Khalkhuzhaev
%A Islom. A. Khujamiyorov
%T On the discrete spectrum of the Schr\"odinger operator using the 2+1 fermionic trimer on the lattice
%J Nanosistemy: fizika, himiâ, matematika
%D 2023
%P 518-529
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a2/
%G en
%F NANO_2023_14_5_a2
Ahmad M. Khalkhuzhaev; Islom. A. Khujamiyorov. On the discrete spectrum of the Schr\"odinger operator using the 2+1 fermionic trimer on the lattice. Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 5, pp. 518-529. http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a2/