On the discrete spectrum of the Schr\"odinger operator using the 2+1 fermionic trimer on the lattice
Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 5, pp. 518-529
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the three-particle discrete Schrödinger operator $H_{\mu,\gamma}(\mathbf{K})$, $\mathbf{K}\in\mathbb{T}^3$, associated with the three-particle Hamiltonian (two of them are fermions with mass 1 and one of them is arbitrary with mass $m=1/\gamma1$), interacting via pair of repulsive contact potentials $\mu>0$ on a three-dimensional lattice $\mathbb{Z}^3$. It is proved that there are critical values of mass ratios $\gamma=\gamma_1$ and $\gamma=\gamma_2$ such that if $\gamma\in(0,\gamma_1)$, then the operator $H_{\mu,\gamma}(0)$ has no eigenvalues. If $\gamma\in(\gamma_1,\gamma_2)$, then the operator $H_{\mu,\gamma}(0)$ has a unique eigenvalue; if $\gamma>\gamma_2$, then the operator $H_{\mu,\gamma}(0)$ has three eigenvalues lying to the right of the essential spectrum for all sufficiently large values of the interaction energy $\mu$.
Keywords:
Schrödinger operator, Hamiltonian, contact potential, eigenvalue, quasi-momentum, invariant subspace, Faddeev operator.
Mots-clés : fermion
Mots-clés : fermion
@article{NANO_2023_14_5_a2,
author = {Ahmad M. Khalkhuzhaev and Islom. A. Khujamiyorov},
title = {On the discrete spectrum of the {Schr\"odinger} operator using the 2+1 fermionic trimer on the lattice},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {518--529},
publisher = {mathdoc},
volume = {14},
number = {5},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a2/}
}
TY - JOUR AU - Ahmad M. Khalkhuzhaev AU - Islom. A. Khujamiyorov TI - On the discrete spectrum of the Schr\"odinger operator using the 2+1 fermionic trimer on the lattice JO - Nanosistemy: fizika, himiâ, matematika PY - 2023 SP - 518 EP - 529 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a2/ LA - en ID - NANO_2023_14_5_a2 ER -
%0 Journal Article %A Ahmad M. Khalkhuzhaev %A Islom. A. Khujamiyorov %T On the discrete spectrum of the Schr\"odinger operator using the 2+1 fermionic trimer on the lattice %J Nanosistemy: fizika, himiâ, matematika %D 2023 %P 518-529 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a2/ %G en %F NANO_2023_14_5_a2
Ahmad M. Khalkhuzhaev; Islom. A. Khujamiyorov. On the discrete spectrum of the Schr\"odinger operator using the 2+1 fermionic trimer on the lattice. Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 5, pp. 518-529. http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a2/