Boundary value problem for a degenerate equation with a Riemann--Liouville operator
Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 5, pp. 511-517
Voir la notice de l'article provenant de la source Math-Net.Ru
In the article, the uniqueness and solvability of one boundary value problem for a high-order equation with two lines of degeneracy with a fractional Riemann–Liouville derivative in a rectangular domain is studied by the Fourier method. Sufficient conditions for the well-posedness of the problem posed are obtained.
Keywords:
high order equation, initial-boundary value problem, fractional derivative in the sense of Riemann–Liouville, eigenvalue, eigenfunction,
Kilbas–Saigo function, series, uniqueness.
Mots-clés : convergence, existence
Mots-clés : convergence, existence
@article{NANO_2023_14_5_a1,
author = {Bakhrom Yu. Irgashev},
title = {Boundary value problem for a degenerate equation with a {Riemann--Liouville} operator},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {511--517},
publisher = {mathdoc},
volume = {14},
number = {5},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a1/}
}
TY - JOUR AU - Bakhrom Yu. Irgashev TI - Boundary value problem for a degenerate equation with a Riemann--Liouville operator JO - Nanosistemy: fizika, himiâ, matematika PY - 2023 SP - 511 EP - 517 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a1/ LA - en ID - NANO_2023_14_5_a1 ER -
Bakhrom Yu. Irgashev. Boundary value problem for a degenerate equation with a Riemann--Liouville operator. Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 5, pp. 511-517. http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a1/