On the spectrum of the two-particle Schr\"odinger operator with point potential: one dimensional case
Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 5, pp. 505-510
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, a one-dimensional two-particle quantum system interacted by two identical point interactions is considered. The corresponding Schrödinger operator (energy operator) $h_\varepsilon$ depending on $\varepsilon$ is constructed as a self-adjoint extension of the symmetric Laplace operator. The main results of the work are based on the study of the operator $h_\varepsilon$. First, the essential spectrum is described. The existence of unique negative eigenvalue of the Schrödinger operator is proved. Further, this eigenvalue and the corresponding eigenfunction are found.
Keywords:
two-particle quantum system, symmetric Laplace operator, eigenvalue, eigenfunction, energy operator.
@article{NANO_2023_14_5_a0,
author = {Utkir N. Kuljanov},
title = {On the spectrum of the two-particle {Schr\"odinger} operator with point potential: one dimensional case},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {505--510},
publisher = {mathdoc},
volume = {14},
number = {5},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a0/}
}
TY - JOUR AU - Utkir N. Kuljanov TI - On the spectrum of the two-particle Schr\"odinger operator with point potential: one dimensional case JO - Nanosistemy: fizika, himiâ, matematika PY - 2023 SP - 505 EP - 510 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a0/ LA - en ID - NANO_2023_14_5_a0 ER -
%0 Journal Article %A Utkir N. Kuljanov %T On the spectrum of the two-particle Schr\"odinger operator with point potential: one dimensional case %J Nanosistemy: fizika, himiâ, matematika %D 2023 %P 505-510 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a0/ %G en %F NANO_2023_14_5_a0
Utkir N. Kuljanov. On the spectrum of the two-particle Schr\"odinger operator with point potential: one dimensional case. Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 5, pp. 505-510. http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a0/