On the spectrum of the two-particle Schr\"odinger operator with point potential: one dimensional case
Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 5, pp. 505-510.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a one-dimensional two-particle quantum system interacted by two identical point interactions is considered. The corresponding Schrödinger operator (energy operator) $h_\varepsilon$ depending on $\varepsilon$ is constructed as a self-adjoint extension of the symmetric Laplace operator. The main results of the work are based on the study of the operator $h_\varepsilon$. First, the essential spectrum is described. The existence of unique negative eigenvalue of the Schrödinger operator is proved. Further, this eigenvalue and the corresponding eigenfunction are found.
Keywords: two-particle quantum system, symmetric Laplace operator, eigenvalue, eigenfunction, energy operator.
@article{NANO_2023_14_5_a0,
     author = {Utkir N. Kuljanov},
     title = {On the spectrum of the two-particle {Schr\"odinger} operator with point potential: one dimensional case},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {505--510},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a0/}
}
TY  - JOUR
AU  - Utkir N. Kuljanov
TI  - On the spectrum of the two-particle Schr\"odinger operator with point potential: one dimensional case
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2023
SP  - 505
EP  - 510
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a0/
LA  - en
ID  - NANO_2023_14_5_a0
ER  - 
%0 Journal Article
%A Utkir N. Kuljanov
%T On the spectrum of the two-particle Schr\"odinger operator with point potential: one dimensional case
%J Nanosistemy: fizika, himiâ, matematika
%D 2023
%P 505-510
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a0/
%G en
%F NANO_2023_14_5_a0
Utkir N. Kuljanov. On the spectrum of the two-particle Schr\"odinger operator with point potential: one dimensional case. Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 5, pp. 505-510. http://geodesic.mathdoc.fr/item/NANO_2023_14_5_a0/