Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation
Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 2, pp. 151-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider a tensor sum $H_{\mu,\lambda}$, $\mu,\lambda>0$ of two Friedrichs models $h_{\mu,\lambda}$ with rank two perturbation. The Hamiltonian $H_{\mu,\lambda}$ is associated with a system of three quantum particles on one-dimensional lattice. We investigate the number and location of the eigenvalues of $H_{\mu,\lambda}$. The existence of eigenvalues located respectively inside, in the gap, and below the bottom of the essential spectrum of $H_{\mu,\lambda}$ is proved.
Keywords: tensor sum, Hamiltonian, lattice, non-local interaction, Friedrichs model, eigenvalue
Mots-clés : quantum particles, perturbation.
@article{NANO_2023_14_2_a0,
     author = {Tulkin H. Rasulov and Bekzod I. Bahronov},
     title = {Existence of the eigenvalues of a tensor sum of the {Friedrichs} models with rank 2 perturbation},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {151--157},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2023_14_2_a0/}
}
TY  - JOUR
AU  - Tulkin H. Rasulov
AU  - Bekzod I. Bahronov
TI  - Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2023
SP  - 151
EP  - 157
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2023_14_2_a0/
LA  - en
ID  - NANO_2023_14_2_a0
ER  - 
%0 Journal Article
%A Tulkin H. Rasulov
%A Bekzod I. Bahronov
%T Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation
%J Nanosistemy: fizika, himiâ, matematika
%D 2023
%P 151-157
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2023_14_2_a0/
%G en
%F NANO_2023_14_2_a0
Tulkin H. Rasulov; Bekzod I. Bahronov. Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation. Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 2, pp. 151-157. http://geodesic.mathdoc.fr/item/NANO_2023_14_2_a0/