Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation
Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 2, pp. 151-157
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper we consider a tensor sum $H_{\mu,\lambda}$, $\mu,\lambda>0$ of two Friedrichs models $h_{\mu,\lambda}$ with rank two perturbation. The Hamiltonian $H_{\mu,\lambda}$ is associated with a system of three quantum particles on one-dimensional lattice. We investigate the number and location of the eigenvalues of $H_{\mu,\lambda}$. The existence of eigenvalues located respectively inside, in the gap, and below the bottom of the essential spectrum of $H_{\mu,\lambda}$ is proved.
Keywords:
tensor sum, Hamiltonian, lattice, non-local interaction, Friedrichs model, eigenvalue
Mots-clés : quantum particles, perturbation.
Mots-clés : quantum particles, perturbation.
@article{NANO_2023_14_2_a0,
author = {Tulkin H. Rasulov and Bekzod I. Bahronov},
title = {Existence of the eigenvalues of a tensor sum of the {Friedrichs} models with rank 2 perturbation},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {151--157},
year = {2023},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2023_14_2_a0/}
}
TY - JOUR AU - Tulkin H. Rasulov AU - Bekzod I. Bahronov TI - Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation JO - Nanosistemy: fizika, himiâ, matematika PY - 2023 SP - 151 EP - 157 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/NANO_2023_14_2_a0/ LA - en ID - NANO_2023_14_2_a0 ER -
%0 Journal Article %A Tulkin H. Rasulov %A Bekzod I. Bahronov %T Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation %J Nanosistemy: fizika, himiâ, matematika %D 2023 %P 151-157 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/NANO_2023_14_2_a0/ %G en %F NANO_2023_14_2_a0
Tulkin H. Rasulov; Bekzod I. Bahronov. Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation. Nanosistemy: fizika, himiâ, matematika, Tome 14 (2023) no. 2, pp. 151-157. http://geodesic.mathdoc.fr/item/NANO_2023_14_2_a0/