On the discrete spectrum of a quantum waveguide with Neumann windows in presence of exterior field
Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 2, pp. 156-163
Voir la notice de l'article provenant de la source Math-Net.Ru
The discrete spectrum of the Hamiltonian describing a quantum particle living in three dimensional straight layer of width $d$ in the presence of a constant electric field of strength $F$ is studied. The Neumann boundary conditions are imposed on a finite set of bounded domains (windows) posed at one of the boundary planes and the Dirichlet boundary conditions on the remaining part of the boundary (it is a reduced problem for two identical coupled layers with symmetric electric field). It is proved that such system has eigenvalues below the lower bound of the essential spectrum for any $F\ge0$. Then we closer examine a dependence of bound state energies on $F$ and window's parameters, using numerical methods.
Keywords:
quantum waveguide, Schrödinger operator, discrete spectrum.
@article{NANO_2022_13_2_a3,
author = {A. S. Bagmutov and H. Najar and I. F. Melikhov and I. Y. Popov},
title = {On the discrete spectrum of a quantum waveguide with {Neumann} windows in presence of exterior field},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {156--163},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2022_13_2_a3/}
}
TY - JOUR AU - A. S. Bagmutov AU - H. Najar AU - I. F. Melikhov AU - I. Y. Popov TI - On the discrete spectrum of a quantum waveguide with Neumann windows in presence of exterior field JO - Nanosistemy: fizika, himiâ, matematika PY - 2022 SP - 156 EP - 163 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2022_13_2_a3/ LA - en ID - NANO_2022_13_2_a3 ER -
%0 Journal Article %A A. S. Bagmutov %A H. Najar %A I. F. Melikhov %A I. Y. Popov %T On the discrete spectrum of a quantum waveguide with Neumann windows in presence of exterior field %J Nanosistemy: fizika, himiâ, matematika %D 2022 %P 156-163 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/NANO_2022_13_2_a3/ %G en %F NANO_2022_13_2_a3
A. S. Bagmutov; H. Najar; I. F. Melikhov; I. Y. Popov. On the discrete spectrum of a quantum waveguide with Neumann windows in presence of exterior field. Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 2, pp. 156-163. http://geodesic.mathdoc.fr/item/NANO_2022_13_2_a3/