Periodic solutions for an impulsive system of nonlinear differential equations with maxima
Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 2, pp. 135-141
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, a periodical boundary value problem for a first order system of ordinary differential equations with impulsive effects and maxima is investigated. We define a nonlinear functional-integral system, the set of periodic solutions of which consides with the set of periodic solutions of the given problem. In the proof of the existence and uniqueness of the periodic solution of the obtained system, the method of compressing mapping is used.
Keywords:
impulsive differential equations, periodical boundary value condition, successive approximations, existence and uniqueness of periodic solution.
@article{NANO_2022_13_2_a0,
author = {T. K. Yuldashev},
title = {Periodic solutions for an impulsive system of nonlinear differential equations with maxima},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {135--141},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2022_13_2_a0/}
}
TY - JOUR AU - T. K. Yuldashev TI - Periodic solutions for an impulsive system of nonlinear differential equations with maxima JO - Nanosistemy: fizika, himiâ, matematika PY - 2022 SP - 135 EP - 141 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2022_13_2_a0/ LA - en ID - NANO_2022_13_2_a0 ER -
T. K. Yuldashev. Periodic solutions for an impulsive system of nonlinear differential equations with maxima. Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 2, pp. 135-141. http://geodesic.mathdoc.fr/item/NANO_2022_13_2_a0/