Periodic solutions for an impulsive system of nonlinear differential equations with maxima
Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 2, pp. 135-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a periodical boundary value problem for a first order system of ordinary differential equations with impulsive effects and maxima is investigated. We define a nonlinear functional-integral system, the set of periodic solutions of which consides with the set of periodic solutions of the given problem. In the proof of the existence and uniqueness of the periodic solution of the obtained system, the method of compressing mapping is used.
Keywords: impulsive differential equations, periodical boundary value condition, successive approximations, existence and uniqueness of periodic solution.
@article{NANO_2022_13_2_a0,
     author = {T. K. Yuldashev},
     title = {Periodic solutions for an impulsive system of nonlinear differential equations with maxima},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {135--141},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2022_13_2_a0/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - Periodic solutions for an impulsive system of nonlinear differential equations with maxima
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2022
SP  - 135
EP  - 141
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2022_13_2_a0/
LA  - en
ID  - NANO_2022_13_2_a0
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T Periodic solutions for an impulsive system of nonlinear differential equations with maxima
%J Nanosistemy: fizika, himiâ, matematika
%D 2022
%P 135-141
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2022_13_2_a0/
%G en
%F NANO_2022_13_2_a0
T. K. Yuldashev. Periodic solutions for an impulsive system of nonlinear differential equations with maxima. Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 2, pp. 135-141. http://geodesic.mathdoc.fr/item/NANO_2022_13_2_a0/