On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima
Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 1, pp. 36-44
A nonlocal boundary value problem for a system of ordinary integro-differential equations with impulsive effects, degenerate kernel and maxima is investigated. The boundary value problem is given by the integral condition. The method of successive approximations in combination with the method of compressing mapping is used. The existence and uniqueness of the solution of the boundary value problem are proved. The continuous dependence of the solution on the right-hand side of the boundary value condition is shown.
Keywords:
impulsive integro-differential equations, successive approximations, existence and uniqueness, continuous dependence of solution.
Mots-clés : nonlocal condition
Mots-clés : nonlocal condition
@article{NANO_2022_13_1_a5,
author = {Tursun K. Yuldashev and Aziz K. Fayziev},
title = {On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {36--44},
year = {2022},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a5/}
}
TY - JOUR AU - Tursun K. Yuldashev AU - Aziz K. Fayziev TI - On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima JO - Nanosistemy: fizika, himiâ, matematika PY - 2022 SP - 36 EP - 44 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a5/ LA - en ID - NANO_2022_13_1_a5 ER -
%0 Journal Article %A Tursun K. Yuldashev %A Aziz K. Fayziev %T On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima %J Nanosistemy: fizika, himiâ, matematika %D 2022 %P 36-44 %V 13 %N 1 %U http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a5/ %G en %F NANO_2022_13_1_a5
Tursun K. Yuldashev; Aziz K. Fayziev. On a nonlinear impulsive system of integro-differential equations with degenerate kernel and maxima. Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 1, pp. 36-44. http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a5/