On the construction of de Branges spaces for dynamical systems associated with finite Jacobi matrices
Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 1, pp. 24-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider dynamical systems with boundary control associated with finite Jacobi matrices. Using the method previously developed by the authors, we associate with these systems special Hilbert spaces of analytic functions (de Branges spaces).
Keywords: boundary control method, Krein equations, de Branges spaces.
Mots-clés : Jacobi matrices
@article{NANO_2022_13_1_a3,
     author = {Alexander S. Mikhailov and Victor S. Mikhailov},
     title = {On the construction of de {Branges} spaces for dynamical systems associated with finite {Jacobi} matrices},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {24--29},
     year = {2022},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a3/}
}
TY  - JOUR
AU  - Alexander S. Mikhailov
AU  - Victor S. Mikhailov
TI  - On the construction of de Branges spaces for dynamical systems associated with finite Jacobi matrices
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2022
SP  - 24
EP  - 29
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a3/
LA  - en
ID  - NANO_2022_13_1_a3
ER  - 
%0 Journal Article
%A Alexander S. Mikhailov
%A Victor S. Mikhailov
%T On the construction of de Branges spaces for dynamical systems associated with finite Jacobi matrices
%J Nanosistemy: fizika, himiâ, matematika
%D 2022
%P 24-29
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a3/
%G en
%F NANO_2022_13_1_a3
Alexander S. Mikhailov; Victor S. Mikhailov. On the construction of de Branges spaces for dynamical systems associated with finite Jacobi matrices. Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 1, pp. 24-29. http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a3/