Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation
Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 1, pp. 5-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a general second order elliptic operator in a planar waveguide perforated by small holes distributed along a curve and subject to classical boundary conditions on the holes. Under weak assumptions on the perforation, we describe all possible homogenized problems.
Keywords: perforation, elliptic operator, unbounded domain, homogenization, norm resolvent convergence.
@article{NANO_2022_13_1_a0,
     author = {Giuseppe Cardone and Tiziana Durante},
     title = {Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a0/}
}
TY  - JOUR
AU  - Giuseppe Cardone
AU  - Tiziana Durante
TI  - Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2022
SP  - 5
EP  - 11
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a0/
LA  - en
ID  - NANO_2022_13_1_a0
ER  - 
%0 Journal Article
%A Giuseppe Cardone
%A Tiziana Durante
%T Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation
%J Nanosistemy: fizika, himiâ, matematika
%D 2022
%P 5-11
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a0/
%G en
%F NANO_2022_13_1_a0
Giuseppe Cardone; Tiziana Durante. Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation. Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a0/