Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation
Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 1, pp. 5-11
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a general second order elliptic operator in a planar waveguide perforated by small holes distributed along a curve and subject to classical boundary conditions on the holes. Under weak assumptions on the perforation, we describe all possible homogenized problems.
Keywords:
perforation, elliptic operator, unbounded domain, homogenization, norm resolvent convergence.
@article{NANO_2022_13_1_a0,
author = {Giuseppe Cardone and Tiziana Durante},
title = {Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {5--11},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a0/}
}
TY - JOUR AU - Giuseppe Cardone AU - Tiziana Durante TI - Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation JO - Nanosistemy: fizika, himiâ, matematika PY - 2022 SP - 5 EP - 11 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a0/ LA - en ID - NANO_2022_13_1_a0 ER -
%0 Journal Article %A Giuseppe Cardone %A Tiziana Durante %T Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation %J Nanosistemy: fizika, himiâ, matematika %D 2022 %P 5-11 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a0/ %G en %F NANO_2022_13_1_a0
Giuseppe Cardone; Tiziana Durante. Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation. Nanosistemy: fizika, himiâ, matematika, Tome 13 (2022) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/NANO_2022_13_1_a0/