Monotonicity of the eigenvalues of the two-particle Schrödinger operatoron a lattice
Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 6, pp. 657-663
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the two-particle Schrödinger operator $H(\mathbf{k})$, ($\mathbf{k}\in\mathbf{T^3}\equiv(-\pi,\pi]^3$) is the total quasimomentum of a system of two particles) corresponding to the Hamiltonian of the two-particle system on the three-dimensional lattice $\mathbf{Z}^3$. It is proved that the number $N(\mathbf{k})\equiv N(k^{(1)},k^{(2)},k^{(3)})$ of eigenvalues below the essential spectrum of the operator $H(\mathbf{k})$ is nondecreasing function in each $k^{(i)}\in[0,\pi]$, $i=1,2,3$. Under some additional conditions potential $\hat{v}$, the monotonicity of each eigenvalue $z_n(\mathbf{k})\equiv z_n(k^{(1)},k^{(2)},k^{(3)})$ of the operator $H(\mathbf{k})$ in $k^{(i)}\in[0,\pi]$ with other coordinates $\mathbf{k}$ being fixed is proved.
Keywords:
two-particle Schrödinger operator, Birman–Schwinger principle, total quasimomentum, monotonicity of the eigenvalues.
@article{NANO_2021_12_6_a0,
author = {J. I. Abdullaev and A. M. Khalkhuzhaev and L. S. Usmonov},
title = {Monotonicity of the eigenvalues of the two-particle {Schr\"odinger} operatoron a lattice},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {657--663},
year = {2021},
volume = {12},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2021_12_6_a0/}
}
TY - JOUR AU - J. I. Abdullaev AU - A. M. Khalkhuzhaev AU - L. S. Usmonov TI - Monotonicity of the eigenvalues of the two-particle Schrödinger operatoron a lattice JO - Nanosistemy: fizika, himiâ, matematika PY - 2021 SP - 657 EP - 663 VL - 12 IS - 6 UR - http://geodesic.mathdoc.fr/item/NANO_2021_12_6_a0/ LA - en ID - NANO_2021_12_6_a0 ER -
%0 Journal Article %A J. I. Abdullaev %A A. M. Khalkhuzhaev %A L. S. Usmonov %T Monotonicity of the eigenvalues of the two-particle Schrödinger operatoron a lattice %J Nanosistemy: fizika, himiâ, matematika %D 2021 %P 657-663 %V 12 %N 6 %U http://geodesic.mathdoc.fr/item/NANO_2021_12_6_a0/ %G en %F NANO_2021_12_6_a0
J. I. Abdullaev; A. M. Khalkhuzhaev; L. S. Usmonov. Monotonicity of the eigenvalues of the two-particle Schrödinger operatoron a lattice. Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 6, pp. 657-663. http://geodesic.mathdoc.fr/item/NANO_2021_12_6_a0/