Monotonicity of the eigenvalues of the two-particle Schr\"odinger operatoron a lattice
Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 6, pp. 657-663.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the two-particle Schrödinger operator $H(\mathbf{k})$, ($\mathbf{k}\in\mathbf{T^3}\equiv(-\pi,\pi]^3$) is the total quasimomentum of a system of two particles) corresponding to the Hamiltonian of the two-particle system on the three-dimensional lattice $\mathbf{Z}^3$. It is proved that the number $N(\mathbf{k})\equiv N(k^{(1)},k^{(2)},k^{(3)})$ of eigenvalues below the essential spectrum of the operator $H(\mathbf{k})$ is nondecreasing function in each $k^{(i)}\in[0,\pi]$, $i=1,2,3$. Under some additional conditions potential $\hat{v}$, the monotonicity of each eigenvalue $z_n(\mathbf{k})\equiv z_n(k^{(1)},k^{(2)},k^{(3)})$ of the operator $H(\mathbf{k})$ in $k^{(i)}\in[0,\pi]$ with other coordinates $\mathbf{k}$ being fixed is proved.
Keywords: two-particle Schrödinger operator, Birman–Schwinger principle, total quasimomentum, monotonicity of the eigenvalues.
@article{NANO_2021_12_6_a0,
     author = {J. I. Abdullaev and A. M. Khalkhuzhaev and L. S. Usmonov},
     title = {Monotonicity of the eigenvalues of the two-particle {Schr\"odinger} operatoron a lattice},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {657--663},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2021_12_6_a0/}
}
TY  - JOUR
AU  - J. I. Abdullaev
AU  - A. M. Khalkhuzhaev
AU  - L. S. Usmonov
TI  - Monotonicity of the eigenvalues of the two-particle Schr\"odinger operatoron a lattice
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2021
SP  - 657
EP  - 663
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2021_12_6_a0/
LA  - en
ID  - NANO_2021_12_6_a0
ER  - 
%0 Journal Article
%A J. I. Abdullaev
%A A. M. Khalkhuzhaev
%A L. S. Usmonov
%T Monotonicity of the eigenvalues of the two-particle Schr\"odinger operatoron a lattice
%J Nanosistemy: fizika, himiâ, matematika
%D 2021
%P 657-663
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2021_12_6_a0/
%G en
%F NANO_2021_12_6_a0
J. I. Abdullaev; A. M. Khalkhuzhaev; L. S. Usmonov. Monotonicity of the eigenvalues of the two-particle Schr\"odinger operatoron a lattice. Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 6, pp. 657-663. http://geodesic.mathdoc.fr/item/NANO_2021_12_6_a0/