Bound states for Laplacian perturbed by varying potential supportedby line in $\mathbb{R}^3$
Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 5, pp. 549-552
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate a system with attracting $\delta$-potential located along a straight line in 3D. It has constant intensity, except for a local region. We prove the existence of discrete spectrum and construct an upper bound on the number of bound states, using Birman–Schwinger method.
Keywords:
operator extension theory, singular potential, spectrum.
@article{NANO_2021_12_5_a0,
author = {A. S. Bagmutov},
title = {Bound states for {Laplacian} perturbed by varying potential supportedby line in $\mathbb{R}^3$},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {549--552},
year = {2021},
volume = {12},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2021_12_5_a0/}
}
TY - JOUR
AU - A. S. Bagmutov
TI - Bound states for Laplacian perturbed by varying potential supportedby line in $\mathbb{R}^3$
JO - Nanosistemy: fizika, himiâ, matematika
PY - 2021
SP - 549
EP - 552
VL - 12
IS - 5
UR - http://geodesic.mathdoc.fr/item/NANO_2021_12_5_a0/
LA - en
ID - NANO_2021_12_5_a0
ER -
A. S. Bagmutov. Bound states for Laplacian perturbed by varying potential supportedby line in $\mathbb{R}^3$. Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 5, pp. 549-552. http://geodesic.mathdoc.fr/item/NANO_2021_12_5_a0/