Bound states for Laplacian perturbed by varying potential supportedby line in $\mathbb{R}^3$
Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 5, pp. 549-552.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a system with attracting $\delta$-potential located along a straight line in 3D. It has constant intensity, except for a local region. We prove the existence of discrete spectrum and construct an upper bound on the number of bound states, using Birman–Schwinger method.
Keywords: operator extension theory, singular potential, spectrum.
@article{NANO_2021_12_5_a0,
     author = {A. S. Bagmutov},
     title = {Bound states for {Laplacian} perturbed by varying potential supportedby line in $\mathbb{R}^3$},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {549--552},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2021_12_5_a0/}
}
TY  - JOUR
AU  - A. S. Bagmutov
TI  - Bound states for Laplacian perturbed by varying potential supportedby line in $\mathbb{R}^3$
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2021
SP  - 549
EP  - 552
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2021_12_5_a0/
LA  - en
ID  - NANO_2021_12_5_a0
ER  - 
%0 Journal Article
%A A. S. Bagmutov
%T Bound states for Laplacian perturbed by varying potential supportedby line in $\mathbb{R}^3$
%J Nanosistemy: fizika, himiâ, matematika
%D 2021
%P 549-552
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2021_12_5_a0/
%G en
%F NANO_2021_12_5_a0
A. S. Bagmutov. Bound states for Laplacian perturbed by varying potential supportedby line in $\mathbb{R}^3$. Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 5, pp. 549-552. http://geodesic.mathdoc.fr/item/NANO_2021_12_5_a0/