On Sombor energy of graphs
Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 4, pp. 411-417.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of Sombor index $SO(G)$ was recently introduced by Gutman in the chemical graph theory. It is a vertex-degree-based topological index and is denoted by $SO(G)$. This paper introduces a new matrix for a graph $G$, called the Sombor matrix, and defines a new variant of graph energy called Sombor energy $ES(G)$ of a graph $G$. The striking feature of this new matrix is that it is related to well-known degree-based topological indices called forgotten indices. When $ES(G)$ values of some molecules containing hetero atoms are correlated with their total $\pi$-electron energy, we got a good correlation with the correlation coefficient $r$ = 0.976. Further, we found some bounds and characterizations on the largest eigenvalue of $S(G)$ and Sombor energy of graphs.
Keywords: Sombor index, Sombor energy, forgotten index.
@article{NANO_2021_12_4_a0,
     author = {K. J. Gowtham and Narahari Narasimha Swamy},
     title = {On {Sombor} energy of graphs},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {411--417},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2021_12_4_a0/}
}
TY  - JOUR
AU  - K. J. Gowtham
AU  - Narahari Narasimha Swamy
TI  - On Sombor energy of graphs
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2021
SP  - 411
EP  - 417
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2021_12_4_a0/
LA  - en
ID  - NANO_2021_12_4_a0
ER  - 
%0 Journal Article
%A K. J. Gowtham
%A Narahari Narasimha Swamy
%T On Sombor energy of graphs
%J Nanosistemy: fizika, himiâ, matematika
%D 2021
%P 411-417
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2021_12_4_a0/
%G en
%F NANO_2021_12_4_a0
K. J. Gowtham; Narahari Narasimha Swamy. On Sombor energy of graphs. Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 4, pp. 411-417. http://geodesic.mathdoc.fr/item/NANO_2021_12_4_a0/