Chemical applicability of Gourava and hyper-Gourava indices
Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 2, pp. 142-150
Voir la notice de l'article provenant de la source Math-Net.Ru
Topological indices are extensively used as molecular descriptors in building Quantitative Structure-Activity Relationship (QSAR), Quantitative Structure-Property Relationship (QSPR) and Quantitative Structure-Toxicity Relationship (QSTR). In this paper, Gourava and hyper-Gourava indices are tested with physico-chemical properties of octane isomers such as entropy, acentric factor and DHVAP using linear regression models. The first Gourava index highly correlates with entropy (coefficient of correlation 0.9644924) and the second Gourava index highly correlates with acentric factor (coefficient of correlation 0.962243). Further, Gourava and hyper-Gourava indices are obtained for the line graph of subdivision graph of 2D-lattice, nanotube and nanotorus of $TUC_4C_8[p,q]$.
Keywords:
topological indices, 2D-lattice of $TUC_4C_8[p,q]$, nanotube
Mots-clés : Gourava indices, hyper-Gourava indices, $TUC_4C_8[p,q]$, $TUC_4C_8[p,q]$, nanotorus.
Mots-clés : Gourava indices, hyper-Gourava indices, $TUC_4C_8[p,q]$, $TUC_4C_8[p,q]$, nanotorus.
@article{NANO_2021_12_2_a1,
author = {B. Basavanagoud and Shruti Policepatil},
title = {Chemical applicability of {Gourava} and {hyper-Gourava} indices},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {142--150},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2021_12_2_a1/}
}
TY - JOUR AU - B. Basavanagoud AU - Shruti Policepatil TI - Chemical applicability of Gourava and hyper-Gourava indices JO - Nanosistemy: fizika, himiâ, matematika PY - 2021 SP - 142 EP - 150 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/NANO_2021_12_2_a1/ LA - en ID - NANO_2021_12_2_a1 ER -
B. Basavanagoud; Shruti Policepatil. Chemical applicability of Gourava and hyper-Gourava indices. Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 2, pp. 142-150. http://geodesic.mathdoc.fr/item/NANO_2021_12_2_a1/