Non-compact perturbations of the spectrum of multipliers given with functions
Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 2, pp. 135-141
Cet article a éte moissonné depuis la source Math-Net.Ru
The change in the spectrum of the multipliers $H_0f(x,y)=x^\alpha+y^\beta f(x,y)$ and $H_0 f(x,y)=x^\alpha y^\beta f(x,y)$ for perturbation with partial integral operators in the spaces $L_2[0,1]^2$ is studied. Precise description of the essential spectrum and the existence of simple eigenvalue is received. We prove that the number of eigenvalues located below the lower edge of the essential spectrum in the model is finite.
Keywords:
essential spectrum, discrete spectrum, lower bound of the essential spectrum, partial integral operator.
@article{NANO_2021_12_2_a0,
author = {R. R. Kucharov and R. R. Khamraeva},
title = {Non-compact perturbations of the spectrum of multipliers given with functions},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {135--141},
year = {2021},
volume = {12},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2021_12_2_a0/}
}
TY - JOUR AU - R. R. Kucharov AU - R. R. Khamraeva TI - Non-compact perturbations of the spectrum of multipliers given with functions JO - Nanosistemy: fizika, himiâ, matematika PY - 2021 SP - 135 EP - 141 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/NANO_2021_12_2_a0/ LA - en ID - NANO_2021_12_2_a0 ER -
R. R. Kucharov; R. R. Khamraeva. Non-compact perturbations of the spectrum of multipliers given with functions. Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 2, pp. 135-141. http://geodesic.mathdoc.fr/item/NANO_2021_12_2_a0/