Bifurcating standing waves for effective equations in gapped honeycomb structures
Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 1, pp. 5-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we deal with two-dimensional cubic Dirac equations, appearing as an effective model in gapped honeycomb structures. We give a formal derivation starting from cubic Schrödinger equations and prove the existence of standing waves bifurcating from one band-edge of the linear spectrum.
Keywords: nonlinear Dirac equations, bifurcation methods, existence results, honeycomb structures.
@article{NANO_2021_12_1_a0,
     author = {W. Borrelli and R. Carlone},
     title = {Bifurcating standing waves for effective equations in gapped honeycomb structures},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2021_12_1_a0/}
}
TY  - JOUR
AU  - W. Borrelli
AU  - R. Carlone
TI  - Bifurcating standing waves for effective equations in gapped honeycomb structures
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2021
SP  - 5
EP  - 14
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2021_12_1_a0/
LA  - en
ID  - NANO_2021_12_1_a0
ER  - 
%0 Journal Article
%A W. Borrelli
%A R. Carlone
%T Bifurcating standing waves for effective equations in gapped honeycomb structures
%J Nanosistemy: fizika, himiâ, matematika
%D 2021
%P 5-14
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2021_12_1_a0/
%G en
%F NANO_2021_12_1_a0
W. Borrelli; R. Carlone. Bifurcating standing waves for effective equations in gapped honeycomb structures. Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 1, pp. 5-14. http://geodesic.mathdoc.fr/item/NANO_2021_12_1_a0/