Bifurcating standing waves for effective equations in gapped honeycomb structures
Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 1, pp. 5-14
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we deal with two-dimensional cubic Dirac equations, appearing as an effective model in gapped honeycomb structures. We give a formal derivation starting from cubic Schrödinger equations and prove the existence of standing waves bifurcating from one band-edge of the linear spectrum.
Keywords:
nonlinear Dirac equations, bifurcation methods, existence results, honeycomb structures.
@article{NANO_2021_12_1_a0,
author = {W. Borrelli and R. Carlone},
title = {Bifurcating standing waves for effective equations in gapped honeycomb structures},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {5--14},
year = {2021},
volume = {12},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2021_12_1_a0/}
}
TY - JOUR AU - W. Borrelli AU - R. Carlone TI - Bifurcating standing waves for effective equations in gapped honeycomb structures JO - Nanosistemy: fizika, himiâ, matematika PY - 2021 SP - 5 EP - 14 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/NANO_2021_12_1_a0/ LA - en ID - NANO_2021_12_1_a0 ER -
W. Borrelli; R. Carlone. Bifurcating standing waves for effective equations in gapped honeycomb structures. Nanosistemy: fizika, himiâ, matematika, Tome 12 (2021) no. 1, pp. 5-14. http://geodesic.mathdoc.fr/item/NANO_2021_12_1_a0/