Machine learning method for computation of optimal transitions in magnetic nanosystems
Nanosistemy: fizika, himiâ, matematika, Tome 11 (2020) no. 6, pp. 642-650.

Voir la notice de l'article provenant de la source Math-Net.Ru

Minimum energy path (MEP) is an important tool for computation of activation barriers and transition rates for magnetic systems. Recently, new methods for numeric computation of MEP were proposed based on conjugate gradient and L-BFGS methods [1] significantly improved convergence rate compared to nudged elastic band (NEB) method. Due to lack of strict mathematical theory for MEP optimization other more effective methods are expected to exist. In this article, we propose a machine learning based approach to search for MEP computation methods. We reformulate the NEB method as a differentiable transformation in the space of all paths parametrized by a family of metaparameters. Using rate of convergence as the loss function, we train NEB optimizer to find optimal metaparameters. This meta learning technique can be the basis for deriving new optimization methods for computing MEP and other non-classical optimization problems.
Keywords: Transition state, minimum energy path, machine learning, meta learning.
@article{NANO_2020_11_6_a3,
     author = {K. R. Bushuev and I. S. Lobanov},
     title = {Machine learning method for computation of optimal transitions in magnetic nanosystems},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {642--650},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2020_11_6_a3/}
}
TY  - JOUR
AU  - K. R. Bushuev
AU  - I. S. Lobanov
TI  - Machine learning method for computation of optimal transitions in magnetic nanosystems
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2020
SP  - 642
EP  - 650
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2020_11_6_a3/
LA  - en
ID  - NANO_2020_11_6_a3
ER  - 
%0 Journal Article
%A K. R. Bushuev
%A I. S. Lobanov
%T Machine learning method for computation of optimal transitions in magnetic nanosystems
%J Nanosistemy: fizika, himiâ, matematika
%D 2020
%P 642-650
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2020_11_6_a3/
%G en
%F NANO_2020_11_6_a3
K. R. Bushuev; I. S. Lobanov. Machine learning method for computation of optimal transitions in magnetic nanosystems. Nanosistemy: fizika, himiâ, matematika, Tome 11 (2020) no. 6, pp. 642-650. http://geodesic.mathdoc.fr/item/NANO_2020_11_6_a3/