Spin-glass transition in porous spheres BiFeO$_3$
Nanosistemy: fizika, himiâ, matematika, Tome 11 (2020) no. 5, pp. 565-571
Cet article a éte moissonné depuis la source Math-Net.Ru
Magnetic properties of porous spheres BiFeO$_{3}$ have been studied at temperatures ranging from $2$ to $300$ K. A transition to cluster spin glass state has been detected in the region of about $100$ K. The presence of the transition is confirmed by nonlinear variation of coercive force and the appearance of exchange displacement of magnetic hysteresis loops at temperature below $100$ K. Temperature dependence of magnetization for zero-field cooled regime exhibit a maximum at some temperature $T_{m}$. The function $T_{m}(H)$ ($H$ is magneic field) changes in accordance with Almeida-Thouless line. The performed measurements of the frequency dependence of AC susceptibility confirm the behavior of spin glass with spin freezing temperature $T_{f} = 116$ K. The critical index $z\nu = 2.5$ agrees well with the mean-field theory $z\nu = 2.0$.
Keywords:
bismuth ferrite, magnetic properties, porous spheres, spin cluster glass.
Mots-clés : Almeida-Thouless line
Mots-clés : Almeida-Thouless line
@article{NANO_2020_11_5_a8,
author = {A. V. Dmitriev and E. V. Vladimirova and M. A. Semkin and A. V. Korolev},
title = {Spin-glass transition in porous spheres {BiFeO}$_3$},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {565--571},
year = {2020},
volume = {11},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2020_11_5_a8/}
}
TY - JOUR AU - A. V. Dmitriev AU - E. V. Vladimirova AU - M. A. Semkin AU - A. V. Korolev TI - Spin-glass transition in porous spheres BiFeO$_3$ JO - Nanosistemy: fizika, himiâ, matematika PY - 2020 SP - 565 EP - 571 VL - 11 IS - 5 UR - http://geodesic.mathdoc.fr/item/NANO_2020_11_5_a8/ LA - en ID - NANO_2020_11_5_a8 ER -
A. V. Dmitriev; E. V. Vladimirova; M. A. Semkin; A. V. Korolev. Spin-glass transition in porous spheres BiFeO$_3$. Nanosistemy: fizika, himiâ, matematika, Tome 11 (2020) no. 5, pp. 565-571. http://geodesic.mathdoc.fr/item/NANO_2020_11_5_a8/