Positive fixed points of Lyapunov operator
Nanosistemy: fizika, himiâ, matematika, Tome 11 (2020) no. 4, pp. 373-378
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, fixed points of Lyapunov integral equation are found and considered the connections between Gibbs measures for four competing interactions of models with uncountable (i.e. [0 , 1]) set of spin values on the Cayley tree of order two.
Keywords:
Lyapunov integral operator, fixed points, Cayley tree, Gibbs measure.
@article{NANO_2020_11_4_a0,
author = {R. N. Ganikhodjaev and R. R. Kucharov and K. A. Aralova},
title = {Positive fixed points of {Lyapunov} operator},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {373--378},
year = {2020},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2020_11_4_a0/}
}
R. N. Ganikhodjaev; R. R. Kucharov; K. A. Aralova. Positive fixed points of Lyapunov operator. Nanosistemy: fizika, himiâ, matematika, Tome 11 (2020) no. 4, pp. 373-378. http://geodesic.mathdoc.fr/item/NANO_2020_11_4_a0/