Positive fixed points of Lyapunov operator
Nanosistemy: fizika, himiâ, matematika, Tome 11 (2020) no. 4, pp. 373-378 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, fixed points of Lyapunov integral equation are found and considered the connections between Gibbs measures for four competing interactions of models with uncountable (i.e. [0 , 1]) set of spin values on the Cayley tree of order two.
Keywords: Lyapunov integral operator, fixed points, Cayley tree, Gibbs measure.
@article{NANO_2020_11_4_a0,
     author = {R. N. Ganikhodjaev and R. R. Kucharov and K. A. Aralova},
     title = {Positive fixed points of {Lyapunov} operator},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {373--378},
     year = {2020},
     volume = {11},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2020_11_4_a0/}
}
TY  - JOUR
AU  - R. N. Ganikhodjaev
AU  - R. R. Kucharov
AU  - K. A. Aralova
TI  - Positive fixed points of Lyapunov operator
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2020
SP  - 373
EP  - 378
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/NANO_2020_11_4_a0/
LA  - en
ID  - NANO_2020_11_4_a0
ER  - 
%0 Journal Article
%A R. N. Ganikhodjaev
%A R. R. Kucharov
%A K. A. Aralova
%T Positive fixed points of Lyapunov operator
%J Nanosistemy: fizika, himiâ, matematika
%D 2020
%P 373-378
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/NANO_2020_11_4_a0/
%G en
%F NANO_2020_11_4_a0
R. N. Ganikhodjaev; R. R. Kucharov; K. A. Aralova. Positive fixed points of Lyapunov operator. Nanosistemy: fizika, himiâ, matematika, Tome 11 (2020) no. 4, pp. 373-378. http://geodesic.mathdoc.fr/item/NANO_2020_11_4_a0/