Positive fixed points of Lyapunov operator
Nanosistemy: fizika, himiâ, matematika, Tome 11 (2020) no. 4, pp. 373-378.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, fixed points of Lyapunov integral equation are found and considered the connections between Gibbs measures for four competing interactions of models with uncountable (i.e. [0 , 1]) set of spin values on the Cayley tree of order two.
Keywords: Lyapunov integral operator, fixed points, Cayley tree, Gibbs measure.
@article{NANO_2020_11_4_a0,
     author = {R. N. Ganikhodjaev and R. R. Kucharov and K. A. Aralova},
     title = {Positive fixed points of {Lyapunov} operator},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {373--378},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2020_11_4_a0/}
}
TY  - JOUR
AU  - R. N. Ganikhodjaev
AU  - R. R. Kucharov
AU  - K. A. Aralova
TI  - Positive fixed points of Lyapunov operator
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2020
SP  - 373
EP  - 378
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2020_11_4_a0/
LA  - en
ID  - NANO_2020_11_4_a0
ER  - 
%0 Journal Article
%A R. N. Ganikhodjaev
%A R. R. Kucharov
%A K. A. Aralova
%T Positive fixed points of Lyapunov operator
%J Nanosistemy: fizika, himiâ, matematika
%D 2020
%P 373-378
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2020_11_4_a0/
%G en
%F NANO_2020_11_4_a0
R. N. Ganikhodjaev; R. R. Kucharov; K. A. Aralova. Positive fixed points of Lyapunov operator. Nanosistemy: fizika, himiâ, matematika, Tome 11 (2020) no. 4, pp. 373-378. http://geodesic.mathdoc.fr/item/NANO_2020_11_4_a0/