Analysis of the spectrum of a $2\times 2$ operator matrix. Discrete spectrum asymptotics
Nanosistemy: fizika, himiâ, matematika, Tome 11 (2020) no. 2, pp. 138-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a $2\times 2$ operator matrix $A_{\mu}$, $\mu>0$ related with the lattice systems describing two identical bosons and one particle, another nature in interactions, without conservation of the number of particles. We obtain an analog of the Faddeev equation and its symmetric version for the eigenfunctions of $A_{\mu}$. We describe the new branches of the essential spectrum of $A_{\mu}$ via the spectrum of a family of generalized Friedrichs models. It is established that the essential spectrum of $A_{\mu}$ consists the union of at most three bounded closed intervals and their location is studied. For the critical value $\mu_{0}$ of the coupling constant $\mu$ we establish the existence of infinitely many eigenvalues, which are located in the both sides of the essential spectrum of $A_{\mu}$. In this case, an asymptotic formula for the discrete spectrum of $A_{\mu}$ is found.
Keywords: operator matrix, bosonic Fock space, coupling constant, dispersion function, essential and discrete spectrum, Birman–Schwinger principle, spectral subspace, Weyl creterion.
@article{NANO_2020_11_2_a1,
     author = {T. H. Rasulov and E. B. Dilmurodov},
     title = {Analysis of the spectrum of a $2\times 2$ operator matrix. {Discrete} spectrum asymptotics},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {138--144},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2020_11_2_a1/}
}
TY  - JOUR
AU  - T. H. Rasulov
AU  - E. B. Dilmurodov
TI  - Analysis of the spectrum of a $2\times 2$ operator matrix. Discrete spectrum asymptotics
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2020
SP  - 138
EP  - 144
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2020_11_2_a1/
LA  - en
ID  - NANO_2020_11_2_a1
ER  - 
%0 Journal Article
%A T. H. Rasulov
%A E. B. Dilmurodov
%T Analysis of the spectrum of a $2\times 2$ operator matrix. Discrete spectrum asymptotics
%J Nanosistemy: fizika, himiâ, matematika
%D 2020
%P 138-144
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2020_11_2_a1/
%G en
%F NANO_2020_11_2_a1
T. H. Rasulov; E. B. Dilmurodov. Analysis of the spectrum of a $2\times 2$ operator matrix. Discrete spectrum asymptotics. Nanosistemy: fizika, himiâ, matematika, Tome 11 (2020) no. 2, pp. 138-144. http://geodesic.mathdoc.fr/item/NANO_2020_11_2_a1/