Threshold analysis for a family of $2\times2$ operator matrices
Nanosistemy: fizika, himiâ, matematika, Tome 10 (2019) no. 6, pp. 616-622
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a family of $2\times2$ operator matrices $\mathcal{A}_\mu(k)$, $k\in\mathbb{T}^3:=(-\pi;\pi]^3$, $\mu>0$, acting in the direct sum of zero- and one-particle subspaces of a Fock space. It is associated with the Hamiltonian of a system consisting of at most two particles on a three-dimensional lattice $\mathbb{Z}^3$, interacting via annihilation and creation operators. We find a set $\Lambda:=\{k^{(1)},\dots,k^{(8)}\}\subset\mathbb{T}^3$ and a critical value of the coupling constant $\mu$ to establish necessary and sufficient conditions for either $z=0=\min\limits_{k\in\mathbb{T}^3}\sigma_{\mathrm{ess}}(\mathcal{A}_\mu(k))$ (or $z=27/2=\max\limits_{k\in\mathbb{T}^3}\sigma_{\mathrm{ess}}(\mathcal{A}_\mu(k))$) is a threshold eigenvalue or a virtual level of $\mathcal{A}_\mu(k^{(i)})$ for some $k^{(i)}\in\Lambda$.
Keywords:
operator matrices, Hamiltonian, generalized Friedrichs model, zero- and one-particle subspaces of a Fock space, threshold eigenvalues, virtual levels, annihilation and creation operators.
@article{NANO_2019_10_6_a1,
author = {T. H. Rasulov and E. B. Dilmurodov},
title = {Threshold analysis for a family of $2\times2$ operator matrices},
journal = {Nanosistemy: fizika, himi\^a, matematika},
pages = {616--622},
year = {2019},
volume = {10},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/NANO_2019_10_6_a1/}
}
T. H. Rasulov; E. B. Dilmurodov. Threshold analysis for a family of $2\times2$ operator matrices. Nanosistemy: fizika, himiâ, matematika, Tome 10 (2019) no. 6, pp. 616-622. http://geodesic.mathdoc.fr/item/NANO_2019_10_6_a1/