Threshold analysis for a family of $2\times2$ operator matrices
Nanosistemy: fizika, himiâ, matematika, Tome 10 (2019) no. 6, pp. 616-622.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of $2\times2$ operator matrices $\mathcal{A}_\mu(k)$, $k\in\mathbb{T}^3:=(-\pi;\pi]^3$, $\mu>0$, acting in the direct sum of zero- and one-particle subspaces of a Fock space. It is associated with the Hamiltonian of a system consisting of at most two particles on a three-dimensional lattice $\mathbb{Z}^3$, interacting via annihilation and creation operators. We find a set $\Lambda:=\{k^{(1)},\dots,k^{(8)}\}\subset\mathbb{T}^3$ and a critical value of the coupling constant $\mu$ to establish necessary and sufficient conditions for either $z=0=\min\limits_{k\in\mathbb{T}^3}\sigma_{\mathrm{ess}}(\mathcal{A}_\mu(k))$ (or $z=27/2=\max\limits_{k\in\mathbb{T}^3}\sigma_{\mathrm{ess}}(\mathcal{A}_\mu(k))$) is a threshold eigenvalue or a virtual level of $\mathcal{A}_\mu(k^{(i)})$ for some $k^{(i)}\in\Lambda$.
Keywords: operator matrices, Hamiltonian, generalized Friedrichs model, zero- and one-particle subspaces of a Fock space, threshold eigenvalues, virtual levels, annihilation and creation operators.
@article{NANO_2019_10_6_a1,
     author = {T. H. Rasulov and E. B. Dilmurodov},
     title = {Threshold analysis for a family of $2\times2$ operator matrices},
     journal = {Nanosistemy: fizika, himi\^a, matematika},
     pages = {616--622},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/NANO_2019_10_6_a1/}
}
TY  - JOUR
AU  - T. H. Rasulov
AU  - E. B. Dilmurodov
TI  - Threshold analysis for a family of $2\times2$ operator matrices
JO  - Nanosistemy: fizika, himiâ, matematika
PY  - 2019
SP  - 616
EP  - 622
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/NANO_2019_10_6_a1/
LA  - en
ID  - NANO_2019_10_6_a1
ER  - 
%0 Journal Article
%A T. H. Rasulov
%A E. B. Dilmurodov
%T Threshold analysis for a family of $2\times2$ operator matrices
%J Nanosistemy: fizika, himiâ, matematika
%D 2019
%P 616-622
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/NANO_2019_10_6_a1/
%G en
%F NANO_2019_10_6_a1
T. H. Rasulov; E. B. Dilmurodov. Threshold analysis for a family of $2\times2$ operator matrices. Nanosistemy: fizika, himiâ, matematika, Tome 10 (2019) no. 6, pp. 616-622. http://geodesic.mathdoc.fr/item/NANO_2019_10_6_a1/